首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
The electronic structure of the strained g-C2N/XSe2 (X=Mo, W) van der Waals heterostructures are investigated by first-principles calculations. The g-C2N/MoSe2 heterostructure is an indirect band gap semiconductor at a strain from 0% to 8%, where its band gap is 0.66, 0.61, 0.73, 0.60 and 0.33 eV. At K point, the spin splitting is 186, 181, 39, 13 and 9 meV, respectively. For g-C2N/WSe2 heterostructures, the band gap is 0.32, 0.37, 0.42, 0.45 and 0.36 eV, and the conduction band minimum is shifted from Г-M region to K-Г region as the strain increases from 0% to 8%. Its spin splitting monotonically decreases as a strain raises to 8%, which is 445, 424, 261, 111 and 96 meV, respectively. Moreover, at a strain less than 4%, the conduction band mainly comes from g-C2N, but it comes from XSe2 (X=Mo, W) above 6%. Our results show that the g-C2N/XSe2 heterostructures have tunable electronic structures, which makes it a potential candidate for novel electronic devices.  相似文献   

2.
Bismuth oxide carbonate was synthesized from bismuth nitrate and potassium carbonate and then converted to phase pure β-Bi2O3 form by means of thermal decomposition. X-ray diffraction, HR-SEM, diffuse reflectance UV–vis and photocatalytic degradation studies were carried out on both the samples. Bi2O2CO3 exhibited a wide band gap of 3.406(5) eV while β-Bi2O3 had a lesser band gap of 2.589(3) eV. β-Bi2O3 degrades a higher amount of methyl orange because of its lesser band gap and its optimum loading was 0.1 g in 50 ml of 10 ppm solution. After photocatalytic degradation Bi2O2CO3 remains in the stable form whereas β-Bi2O3 changes to Bi2O2CO3.  相似文献   

3.
Zirconia (ZrO2) nanostructures of various sizes have been synthesized using sol–gel method followed by calcination of the samples from 500 to 700 °C. The calcined ZrO2 powder samples were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), Fourier-transform infra-red spectroscopy (FT-IR), UV–visible spectroscopy (UV–vis.), Raman spectroscopy (RS) and thermogravimetric analysis (TGA). The phase transformation from tetragonal (t) to monoclinic (m) was observed. The average diameter of the ZrO2 nanostructures calcined at 500, 600 and 700 °C was calculated to be 8, 17 and 10 nm, respectively. The ZrO2 sample calcined at 500 °C with tetragonal phase shows a direct optical band gap of 5.1 eV. The value of optical band gap is decreased to 4.3 eV for the ZrO2 calcined at 600 °C, which contains both tetragonal (73%) and monoclinic (27%) phases. On further calcination at 700 °C, where the ZrO2 nanostructures have 36% tetragonal and 64% monoclinic phases, the optical band gap is calculated to be 4.8 eV. The enhancement in optical band gap for ZrO2 calcined at 700 °C may be due to the rod like shape of ZrO2 nanostructures. The tetragonal to monoclinic phase transformation was also confirmed by analyzing Raman spectroscopic data. The TG analysis revealed that the ZrO2 nanostructure with dominance of monoclinic phase is found to be more stable over the tetragonal phase. In order to confirm the phase stability of the two phases of ZrO2, single point energy is calculated corresponding to its monoclinic and tetragonal structures using density functional theory (DFT) calculations. The results obtained by theoretical calculations are in good agreement with the experimental findings.  相似文献   

4.
Ag-doping TiO2 composite nanotubes (Ag-TNTs) were synthesized by alkaline fusion followed by hydrothermal treatment. The microstructure and morphology of the materials were characterized by XRD, TEM, XPS, SPS (surface photovoltage spectroscopy), FISPS (electric field-induced surface photovoltage spectroscopy) and Raman spectroscopy. First-principles calculations based on density-functional theory (DFT) showed the formation of several impurity levels near the top of the valence band in the band gap (Eg) of rutile TiO2 due to Ag doping. A “double junction” is proposed, involving a Schottky junction and p–n junction (denoted as “Ag-p–n junction”) occurring between the Ag particles and the nanotube surface, as well as forming inside TiO2 nanotubes, respectively. The strongly built-in electric field of the junctions promotes the separation of photo-holes and photoelectrons, enhancing the photocatalytic efficiency. XRD results indicated that the composite Ag-TNTs exist as a mixture of anatase and rutile phases. XPS results showed that Ti4+ is the primary state of Ti. Raman spectral analysis of Ag-TNTs revealed the presence of a new peak at 271 cm−1. The red-shift of the absorption light wavelength of Ag-TNTs was 0.16 eV (20 nm) due to a considerable narrowing of Eg by the existing impurity levels.  相似文献   

5.
We have performed a comparative density functional theory study on adsorption of hydrogen peroxide (H2O2) on the boron nitride and silicon carbide nanotubes (BNNT and SiCNT) in terms of energetic, geometric, and electronic properties. It has been found that the molecule is chemically adsorbed on both of the tubes so that its interaction with SiCNT (adsorption energy ∼−0.97 eV) is much stronger than that with BNNT (adsorption energy ∼−0.47 eV). The H2O2 adsorption on BNNT slightly decreases its work function, increasing the field electron emission from the BNNT surface while it may not affect that of the SiCNT. In addition, the adsorption process may increase the electrical conductivity of SiCNT while does not affect that of the BNNT, significantly. We believe that the SiCNT may be a potential candidate for detection of H2O2.  相似文献   

6.
Composition Bi4V2−xSrxO11−δ (0.05≤x≤0.20) is synthesized by melt quench technique followed by heat treatment at 800 °C for 12 h. These compounds are characterised by X-ray diffraction, Fourier transform infrared (FTIR) spectroscopy, UV–visible spectroscopy, impedance spectroscopy and scanning electron microscopy. X-ray diffraction patterns of all the samples show γ-phase stabilization at room temperature except x=0.05 heat treated sample. The optical band gap of all the samples is observed in semiconducting range. The lowest and the highest optical band gap is 2.39 eV and 2.57 eV for x=0.10 heat treated and x=0.20 quenched samples, respectively. The highest value of dielectric constant is obtained ~107 with very low dielectric loss for x=0.15 and 0.20 samples at ~350 °C and below 10 Hz. The grain size increases with dopant concentration leads to increase the dielectric constant.  相似文献   

7.
Alumina (Al2O3) powders doped with different amounts of zirconium (Zr) ions were synthesized by the sol-gel process. The Zr concentration was changed from 0 to 3%. Here we attempted to fabricate Zr doped Al2O3 samples and characterized them for their optical and structural properties. Ultraviolet-Visible analysis (UV-Vis), infrared spectroscopy (FT-IR) and powder X-ray diffraction (XRD) have been used to characterize the optical properties, phase evolution and crystallinity of the obtained samples. X-ray diffraction patterns revealed that all the Al2O3 powders obtained were completely amorphous. An optical study was employed to determine the band gap of the samples. The transmittance had decreased from 90 to 86% and the band gap of pure Al2O3 was found to be 4.116 eV, and it was shifted to 4.038 eV for 3% Zr doped Al2O3. The results obtained in this study are discussed comparatively with those cited in the literature.  相似文献   

8.
Near-infrared photoluminescence (PL) and thermally stimulated current (TSC) spectra of Cu3Ga5Se9 layered crystals grown by Bridgman method have been studied in the photon energy region of 1.35–1.46 eV and the temperature range of 15–115 K (PL) and 10–170 K (TSC). An infrared PL band centered at 1.42 eV was revealed at T = 15 K. Radiative transitions from shallow donor level placed at 20 meV to moderately deep acceptor level at 310 meV were suggested to be the reason of the observed PL band. TSC curve of Cu3Ga5Se9 crystal exhibited one broad peak at nearly 88 K. The thermal activation energy of traps was found to be 22 meV. An energy level diagram demonstrating the transitions in the crystal band gap was plotted taking account of results of PL and TSC experiments conducted below room temperature.  相似文献   

9.
In this work, we reported the effect of Li2CO3 addition on the structural, optical, ferroelectric properties and electric-field-induced strain of Bi0.5(Na,K)0.5TiO3 (BNKT) solid solution with CaZrO3 ceramics. Both rhombohedral and tetragonal structures were distorted after adding Lithium (Li). The band gap values decreased from 2.91 to 2.69 eV for 5 mol% Li-addition. The maximum polarization and remanent polarization decreased from 49.66 μC/cm2 to 27.11 μC/cm2 and from 22.93 μC/cm2 to 5.35 μC/cm2 for un-doped and 5 mol% Li- addition BNKT ceramics, respectively. The maximum Smax/Emax value was 567 pm/V at 2 mol% Li2CO3 access. We expected this work will help to understand the role of A-site dopant in lead-free ferroelectric BNKT materials.  相似文献   

10.
Lead-based Pb0.97La0.02(Zn1/3Nb2/3)0.3(Zr0.53Ti0.47)0.7O3 (PLZnNZT) transparent ceramics with the addition of 2 wt% excess PbO were prepared by hot-pressing sintering method. The hot-pressing sintered PLZnNZT ceramics exhibit dense and large-grained microstructure, and perovskite structure with distorted cubic-like symmetry. The ceramics exhibit normal ferroelectric-like dielectric behavior with slightly diffused ferroelectric phase transition characteristic. The PLZnNZT ceramics exhibit fully developed, symmetric and saturated PE hysteresis loop and large piezoelectric constant d33, being 468 pC/N. The ceramics with 120 μm thickness exhibit maximum transmittance of 53% at 850 nm when Fresnel losses was not included, almost totally transparent in the mid IR region (2500–5600 nm), and low-lying optical band gap energy Eg of 3.23 eV. Three diffused Raman bands centering around 240 cm−1, 560 cm−1 and 750 cm−1 are observed by micro-Raman spectroscopy, which can be attributed to F2g [BO6] bending vibration, A1g [BO6] stretching vibration and “soft mode” mixed by the bending and stretching vibrations, respectively, confirming the normal ferroelectric-like characteristic.  相似文献   

11.
Boron nitride nanotubes are synthesized on Si substrate via a chemical vapor deposition technique with different growth durations. Field emission scanning electron microscopy micrographs show a clear influence of growth duration on size and morphology of the synthesized nanotubes. It reveals that the diameter of the tubes decreases and length increases with an increase in growth duration. Total diameter of the tube has been reduced up to 31% and length increased up to 30% with an increase of 20 min growth duration. As a result, morphology of nanotubes has also been changed from curve like to straight. Transmission electron microscope confirms the tubular structure of the synthesized nanotubes with an interlayer spacing of 0.34 nm that corresponds to d(002) plane of hexagonal boron nitride and its crystalline nature. Energy dispersive X-ray spectroscopy indicates the presence of magnesium particles in the synthesized samples that refers to its catalytic growth. X-ray photoelectron spectroscopy confirms the elemental compositions of the sample. Raman spectra reveal a peak shift of 5.48 cm−1 towards higher region of wavelength that corresponds to E2g mode of vibration in hexagonal boron nitride. This result also confirms the structural change in the synthesized boron nitride nanotubes with respect to the growth duration.  相似文献   

12.
The structural, electronic and optical properties of HgAl2Se4 are investigated using the full potential linear augmented plane wave method based on density functional theory. The calculated structural parameters using LDA are in excellent agreement with the available experimental result. The obtained energy band gap (2.24 eV) using EV-GGA approximation is in excellent agreement with experimental data (2.20 eV). Variation in the energy band gap as a function of the unit cell lattice parameter has been studied. The optical properties show a considerable anisotropy, which makes this compound very useful for various linear–nonlinear optical devices.  相似文献   

13.
Regularities of afterglow at room temperature and of thermoluminescence at further heating up to 673 K have been studied in bulk aluminum nitride single crystals. It has been established that after exposure to β-irradiation luminescence decay at RT may be described by superposition of two exponential components: fast (59 s) and slow (606 s) ones, caused by defects of the anion crystal sublattice ON- and VN-centers, respectively. The afterglow spectrum is shown to be characterized by the 3.43 eV band with FWHM=0.61 eV that dominates also in the thermoluminescence under study. From analysis of the TL curves in terms of the general order formalism it has been concluded that variation of the activation energy observed within the 0.46–0.85 eV range with increasing storage of the samples from 5 min to 3 days may be caused by energy distribution of traps on the basis of oxygen-related centers. For the first time the compensation effect has been found, and phenomenologically interpreted for the TL processes of the AlN single crystals. Isokinetic temperature has been estimated within the framework of empiric and non-empiric relations.  相似文献   

14.
We perform first-principles based on the density function theory to investigate electronic and magnetic properties of 1T-HfS2 monolayer with biaxial tensile strain and compressive strain. The results show that HfS2 monolayer under strains doesn’t display magnetic properties. When the strain is 0%, the HfS2 monolayer presents an indirect band gap semiconductor with the band gap is about 1.252 eV. The band gap of HfS2 monolayer decreases quickly with increasing compressive strain and comes to zero when the compressive strain is above −7%, the HfS2 monolayer system turns from semiconductor to metal. While the band gap increases slowly with increasing tensile strain and comes to 1.814 eV when the tensile strain is 10%. By comparison, we find that the compressive strain is more effective in band engineering of pristine 1T-HfS2 monolayer than the tensile strain. And we notice that the extent of band gap variation is different under tensile strain. The change of band gap with strain from 1% to 5% is faster than that of the strain 6–10%. To speak of, the conduction band minimum (CBM) is all located at M point with different strains. While the valence band maximum (VBM) turns from Γ point to K point when the strain is equal to and more than 6%.  相似文献   

15.
A new approach of chemical bath deposition (CBD) of SnO2 thin films is reported. Films with a 0.2 μm thickness are obtained using the multi-dip deposition approach with a deposition time as little as 8–10 min for each dip. The possibility of fabricating a transparent conducting oxide layer of Cd2SnO4 thin films using CBD is investigated through successive layer deposition of CBD-SnO2 and CBD-CdO films, followed by annealing at different temperatures. High quality films with transmittance exceeding 80% in the visible region are obtained. Annealed CBD-SnO2 films are orthorhombic, highly stoichiometric, strongly adhesive, and transparent with an optical band gap of ~4.42 eV. Cd2SnO4 films with a band gap as high as 3.08 eV; a carrier density as high as 1.7 × 1020 cm?3; and a resistivity as low as 1.01 × 10?2 Ω cm are achieved.  相似文献   

16.
Carbon nanotubes (CNTs) are semimetallic while boron nitride nanotubes (BNNTs) are wide band gap insulators. Despite the discrepancy in their electrical properties, a comparison between the mechanical and thermal properties of CNTs and BNNTs has a significant research value for their potential applications. In this work, molecular dynamics simulations are performed to systematically investigate the mechanical and thermal properties of CNTs and BNNTs. The calculated Young’s modulus is about 1.1 TPa for CNTs and 0.72 TPa for BNNTs under axial compressions. The critical bucking strain and maximum stress are inversely proportional to both diameter and length-diameter ratio and CNTs are identified axially stiffer than BNNTs. Thermal conductivities of (10, 0) CNTs and (10, 0) BNNTs follow similar trends with respect to length and temperature and are lower than that of their two-dimensional counterparts, graphene nanoribbons (GNRs) and BN nanoribbons (BNNRs), respectively. As the temperature falls below 200 K (130 K) the thermal conductivity of BNNTs (BNNRs) is larger than that of CNTs (GNRs), while at higher temperature it is lower than the latter. In addition, thermal conductivities of a (10, 0) CNT and a (10, 0) BNNT are further studied and analyzed under various axial compressive strains. Low-frequency phonons which mainly come from flexure modes are believed to make dominant contribution to the thermal conductivity of CNTs and BNNTs.  相似文献   

17.
Thermal Chemical Vapor Deposition technique is modified with the use of Argon gas flow inside the chamber as an alternative for vacuum and orientation of one end closed quartz test tube. The use of Argon gas not only simplified the experimental set up, but also made it ~ 18 % cost effective compared to the conventional set up. Field Emission Scanning Electron Microscopy micrographs show straight and long BNNTs along with some cotton like morphologies. Transmission electron microscopy revealed bamboo like structure inside the tube and ~0.34 nm interlayer spacing for highly crystalline nature of boron nitride nanotubes. X-ray photon spectroscopy shows B 1s peak at 191.08 eV and N 1s peak at 398.78 eV that represents h-BN. Whereas, Raman spectrum indicates a major peak at ~1379.60 (cm−1) that correspond to E2g mode of h-BN.  相似文献   

18.
Polaron theory is often used for the study of electrons and holes mobility in semiconductors when longitudinal optical (LO) phonons are generated upon the charge carriers moving. The polaron theory was applied to explain long-wavelength absorptions observed nearby Soret band in the electronic spectra of assemblies of mono-protonated meso-tetraphenylporphine dimer (TPP2H+) that are interpreted as LO-phonons originated due to proton movement. The energy of hole polaron is found to be 1.50 eV at 77 K. Energy of Franck–Condon transitions of LO-phonons generated by hole polaron moving through water confined in the assemblies with distortions of O–H bonds is 0.2653 eV (2138 cm−1). A broad band around 2127 cm1 corresponding the same energy of O–H bonds vibrations is observed in IR spectra of the assemblies consisting of water and mainly of TPP2H+ species in the solid state indicating the presence of similar distortions of the hydrogen bonds. The radius of protonic sphere of 0.202 Å, which was estimated as a polaron quasiparticle moving through the confined water at 77 K, is found in agreement with earlier evaluated one of 0.265 Å that was obtained for proton diffusion at 298 K in similar assemblies.  相似文献   

19.
Adsorption of two anions (F and Cl) and two cations (Li+ and Na+) on the surface of aluminum nitride nanotubes (AlNNTs) is investigated by density functional theory. The reactions are site-selective, so that the cations and anions prefer to be adsorbed atop the N and Al atoms of the tube surface, respectively. The adsorption energies of anions (−4.46 eV for F and −1.12 eV for Cl) are much higher than those of cations (about −0.17 eV for Li+ and −0.12 eV for Na+) which can be explained using frontier molecular orbital theory. It was found that the adsorption of anions may facilitate the electron emission from the AlNNT surface by reducing the work function due to the charge transfer occurs from the anions to the tube. It has been predicted that in contrast to the cations the adsorption of anions also obviously increases the electrical conductivity of AlNNT.  相似文献   

20.
In this study the structural and optical properties of lanthanum-doped BaSnO3 powder samples and thin films deposited on fused silica were investigaed using laser ablation. Under an oxygen pressure of 5×10−4 mbar, phase pure BaSnO3 films with a lattice constant of 0.417 nm and grain size of 21 nm were prepared at 630 °C. The band gap of BaSnO3 powder sample and thin films was calculated to be 3.36 eV and 3.67 eV, respectively. There was a progressive increase in conductivity for thin films of BaSnO3 doped with 0~7 at% of La. The highest conductivity, 9 Scm−1, was obtained for 7 at% La-doped BaSnO3. Carrier concentration, obtained from Burstein-Moss (B-M) shift, nearly matches the measured values except for 3 at% and 10 at% La-doped BaSnO3 thin films.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号