首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this work is the analysis of the solutions to the following problems related to the fractional p-Laplacian in a Lipschitzian bounded domain \({\Omega \subset \mathbb{R}^N}\),
$$\left\{\begin{array}{lll}-\int_{\mathbb{R}^N}\frac{|u(y)-u(x)|^{p-2}(u(y)-u(x))}{|x-y|^{\alpha p}}\;dy=f(x,u)\;\;&x\in \Omega,\\ u=g(x) &x\in\mathbb{R}^N\setminus \Omega,\end{array}\right.$$
where \({\alpha\in(0,1)}\) and the exponent p goes to infinity. In particular we will analyze the cases:
  1. (i)
    \({f=f(x).}\)
     
  2. (ii)
    \({f=f(u)=|u|^{\theta(p)-1} u \, {\rm with} \, 0 < \theta(p) < p -1 \, {\rm and} \, \lim_{p\to\infty}\frac{\theta(p)}{p-1}=\Theta < 1 \, {\rm with} \, g \geq 0.}\)
     
We show the convergence of the solutions to certain limit as \({p\to\infty}\) and identify the limit equation. In both cases, the limit problem is closely related to the Infinity Fractional Laplacian:
$$\mathcal{L}_\infty v(x)=\mathcal{L}_\infty^+ v(x)+\mathcal{L}_\infty^- v(x),$$
where
$$\mathcal{L}_\infty^+ v(x)=\sup_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}, \quad \mathcal{L}_\infty^- v(x)=\inf_{y\in\mathbb{R}^N}\frac{v(y)-v(x)}{|y-x|^\alpha}.$$
  相似文献   

2.
Let \(\Omega \subset \mathbb {R}^\nu \), \(\nu \ge 2\), be a \(C^{1,1}\) domain whose boundary \(\partial \Omega \) is either compact or behaves suitably at infinity. For \(p\in (1,\infty )\) and \(\alpha >0\), define
$$\begin{aligned} \Lambda (\Omega ,p,\alpha ):=\inf _{\begin{array}{c} u\in W^{1,p}(\Omega )\\ u\not \equiv 0 \end{array}}\dfrac{\displaystyle \int _\Omega |\nabla u|^p \mathrm {d} x - \alpha \displaystyle \int _{\partial \Omega } |u|^p\mathrm {d}\sigma }{\displaystyle \int _\Omega |u|^p\mathrm {d} x}, \end{aligned}$$
where \(\mathrm {d}\sigma \) is the surface measure on \(\partial \Omega \). We show the asymptotics
$$\begin{aligned} \Lambda (\Omega ,p,\alpha )=-(p-1)\alpha ^{\frac{p}{p-1}} - (\nu -1)H_\mathrm {max}\, \alpha + o(\alpha ), \quad \alpha \rightarrow +\infty , \end{aligned}$$
where \(H_\mathrm {max}\) is the maximum mean curvature of \(\partial \Omega \). The asymptotic behavior of the associated minimizers is discussed as well. The estimate is then applied to the study of the best constant in a boundary trace theorem for expanding domains, to the norm estimate for extension operators and to related isoperimetric inequalities.
  相似文献   

3.
In this paper we prove the following theorem: Let \(\Omega \subset \mathbb {R}^{n}\) be a bounded open set, \(\psi \in C_{c}^{2}(\mathbb {R}^{n})\), \(\psi > 0\) on \(\partial \Omega \), be given boundary values and u a nonnegative solution to the problem
$$\begin{aligned}&u \in C^{0}(\overline{\Omega }) \cap C^{2}(\{u> 0\}) \\&u = \psi \quad \text { on } \; \partial \Omega \\&{\text {div}} \left( \frac{Du}{\sqrt{1 + |Du|^{2}}}\right) = \frac{\alpha }{u \sqrt{1 + |Du|^{2}}} \quad \text { in } \; \{u > 0\} \end{aligned}$$
where \(\alpha > 0\) is a given constant. Then \(u \in C^{0, \frac{1}{2}} (\overline{\Omega })\). Furthermore we prove strict mean convexity of the free boundary \(\partial \{u = 0\}\) provided \(\partial \{u = 0\}\) is assumed to be of class \(C^{2}\) and \(\alpha \ge 1\).
  相似文献   

4.
In this paper we study the following singular p(x)-Laplacian problem
$$\begin{aligned} \left\{ \begin{array}{l@{\quad }l} - \text{ div } \left( |\nabla u|^{p(x)-2} \nabla u\right) =\frac{ \lambda }{u^{\beta (x)}}+u^{q(x)}, &{} \text{ in }\quad \Omega , \\ u>0, &{} \text{ in }\quad \Omega , \\ u=0, &{} \text{ on }\quad \partial \Omega , \end{array}\right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^N\), \(N\ge 2\), with smooth boundary \(\partial \Omega \), \(\beta \in C^1(\bar{\Omega })\) with \( 0< \beta (x) <1\), \(p\in C^1(\bar{\Omega })\), \(q \in C(\bar{\Omega })\) with \(p(x)>1\), \(p(x)< q(x) +1 <p^*(x)\) for \(x \in \bar{\Omega }\), where \( p^*(x)= \frac{Np(x)}{N-p(x)} \) for \(p(x) <N\) and \( p^*(x)= \infty \) for \( p(x) \ge N\). We establish \(C^{1,\alpha }\) regularity of weak solutions of the problem and strong comparison principle. Based on these two results, we prove the existence of multiple (at least two) positive solutions for a certain range of \(\lambda \).
  相似文献   

5.
Let \(\Omega := ( a,b ) \subset \mathbb {R}\), \(m\in L^{1} ( \Omega ) \) and \(\phi :\mathbb {R\rightarrow R}\) be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form
$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\phi ( u^{\prime } ) ^{\prime }=m ( x ) f ( u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on } \partial \Omega , \end{array} \right. \end{aligned}$$
where \(f: [ 0,\infty ) \rightarrow [ 0,\infty ) \) is a continuous function which is, roughly speaking, superlinear with respect to \(\phi \). Our approach combines the Guo-Krasnoselski? fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case \(m\ge 0\).
  相似文献   

6.
We study, in the semiclassical limit, the singularly perturbed nonlinear Schrödinger equations
$$\begin{aligned} L^{\hbar }_{A,V} u = f(|u|^2)u \quad \hbox {in}\quad \mathbb {R}^N \end{aligned}$$
(0.1)
where \(N \ge 3\), \(L^{\hbar }_{A,V}\) is the Schrödinger operator with a magnetic field having source in a \(C^1\) vector potential A and a scalar continuous (electric) potential V defined by
$$\begin{aligned} L^{\hbar }_{A,V}= -\hbar ^2 \Delta -\frac{2\hbar }{i} A \cdot \nabla + |A|^2- \frac{\hbar }{i}\mathrm{div}A + V(x). \end{aligned}$$
(0.2)
Here, f is a nonlinear term which satisfies the so-called Berestycki-Lions conditions. We assume that there exists a bounded domain \(\Omega \subset \mathbb {R}^N\) such that
$$\begin{aligned} m_0 \equiv \inf _{x \in \Omega } V(x) < \inf _{x \in \partial \Omega } V(x) \end{aligned}$$
and we set \(K = \{ x \in \Omega \ | \ V(x) = m_0\}\). For \(\hbar >0\) small we prove the existence of at least \({\mathrm{cupl}}(K) + 1\) geometrically distinct, complex-valued solutions to (0.1) whose moduli concentrate around K as \(\hbar \rightarrow 0\).
  相似文献   

7.
In this paper we prove the existence of at least three distinct solutions to the following perturbed Navier problem:
$$\left\{\begin{array}{ll}\Delta (|{\Delta u}|^{p-2}\Delta u) = f(x,u) + \lambda g(x,u) \quad{\rm in}\,\,\,\Omega \\ u=\Delta u = 0 \qquad\qquad\qquad\qquad\qquad\quad{\rm on}\,\,\, \partial \Omega,\end{array}\right.$$
where \({{\Omega \subset \mathbb {R}^N}}\) is an open bounded set with smooth boundary \({\partial \Omega}\) and \({\lambda \in \mathbb {R}}\) . Under very mild conditions on g and some assumptions on the behaviour of the potential of f at 0 and +∞, our result assures the existence of at least three distinct solutions to the above problem for λ small enough. Moreover such solutions belong to a ball of the space \({W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)}\) centered in the origin and with radius not dependent on λ.
  相似文献   

8.
Huashui Zhan 《Acta Appl Math》2018,153(1):147-161
This paper is mainly about the infiltration equation
$$ {u_{t}}= \operatorname{div} \bigl(a(x)|u|^{\alpha }{ \vert { \nabla u} \vert ^{p-2}}\nabla u\bigr),\quad (x,t) \in \Omega \times (0,T), $$
where \(p>1\), \(\alpha >0\), \(a(x)\in C^{1}(\overline{\Omega })\), \(a(x)\geq 0\) with \(a(x)|_{x\in \partial \Omega }=0\). If there is a constant \(\beta \) such that \(\int_{\Omega }a^{-\beta }(x)dx\leq c\), \(p>1+\frac{1}{\beta }\), then the weak solution is smooth enough to define the trace on the boundary, the stability of the weak solutions can be proved as usual. Meanwhile, if for any \(\beta >\frac{1}{p-1}\), \(\int_{\Omega }a^{-\beta }(x)dxdt=\infty \), then the weak solution lacks the regularity to define the trace on the boundary. The main innovation of this paper is to introduce a new kind of the weak solutions. By these new definitions of the weak solutions, one can study the stability of the weak solutions without any boundary value condition.
  相似文献   

9.
Given an open bounded domain \({\Omega\subset\mathbb {R}^{2m}}\) with smooth boundary, we consider a sequence \({(u_k)_{k\in\mathbb{N}}}\) of positive smooth solutions to
$\left\{\begin{array}{ll} (-\Delta)^m u_k=\lambda_k u_k e^{mu_k^2} \quad\quad\quad\quad\quad {\rm in}\,\Omega\\ u_k=\partial_\nu u_k=\cdots =\partial_\nu^{m-1} u_k=0 \quad {\rm on }\, \partial \Omega, \end{array}\right.$
where λ k → 0+. Assuming that the sequence is bounded in \({H^m_0(\Omega)}\) , we study its blow-up behavior. We show that if the sequence is not precompact, then
$\liminf_{k\to\infty}\|u_k\|^2_{H^m_0}:=\liminf_{k\to\infty}\int\limits_\Omega u_k(-\Delta)^m u_k dx\geq \Lambda_1,$
where Λ1 = (2m ? 1)!vol(S 2m ) is the total Q-curvature of S 2m .
  相似文献   

10.
We study both the existence and uniqueness of nonnegative solution to a singular elliptic problem of Kirchhoff type, whose model is:
$$\begin{aligned} {\left\{ \begin{array}{ll} -B\left( \dfrac{1}{2}\displaystyle \int _\Omega |\nabla u|^2\mathrm {d}x\right) \Delta u=\dfrac{h(x)}{u^\gamma }, &{}\quad x\in \Omega ,\\ u>0, &{}\quad x\in \Omega ,\\ u=0, &{}\quad x\in \partial \Omega , \end{array}\right. } \end{aligned}$$
where \(\Omega \subset \mathbb {R}^n(n\ge 1)\) is a smooth bounded domain, \(\gamma >1\), \(h\in L^1(\Omega )\) is positive (i.e., \(h(x)>0\) a.e. in \(\Omega \)), \(B : \mathbb {R}^+\rightarrow \mathbb {R}^+\) is a \(C^1\)-continuous function with positive lower bound. A necessary and sufficient condition will be given for the existence of weak solution of the general nonlocal singular elliptic with strong singularity. In addition, we prove that the solution is unique under some suitable conditions.
  相似文献   

11.
We prove the \(C^{1,\beta }\)-boundary regularity and a comparison principle for weak solutions of the problem
$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p}u-\lambda \psi _{p}(u)=f(x)&{}\quad \text {in }\Omega , \\ u=0&{}\quad \text {on }\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^{N},N>1\ \)with smooth boundary \(\partial \Omega ,\ \ \Delta _{p}u=\mathrm{div}(|\nabla u|^{p-2}\nabla u),\psi _{p}(u)=|u|^{p-2}u,p>1,\ \)and f is allowed to be unbounded.
  相似文献   

12.
This paper is devoted to a substantial generalization of previous work on the analytic hypoellipticity of sums of squares \(P=\sum _1^4X^2_j\) of real vector fields with real analytic coefficient in three variables. For p(xy) quasi-homogeneous in (xy), consider the vector fields
$$\begin{aligned} X_1 = \frac{\partial }{\partial x}, \quad X_2=-\frac{\partial }{\partial y} + p(x,y)\frac{\partial }{\partial t}, \quad X_3=x^{n_1}\frac{\partial }{\partial t}, \quad X_4=y^{n_2}\frac{\partial }{\partial t}, \end{aligned}$$
\( n_1, n_2 \ne 0\). We show that the operator
$$\begin{aligned} P=\sum _1^4 X_j^2, \end{aligned}$$
well known to be \(C^\infty \)-hypoelliptic, is actually analytic hypoelliptic near the origin in \({\mathcal {R}}^3\).
  相似文献   

13.
We consider a bounded open set with smooth boundary \(\Omega \subset M\) in a Riemannian manifold (Mg), and suppose that there exists a non-trivial function \(u\in C({\overline{\Omega }})\) solving the problem
$$\begin{aligned} -\Delta u=V(x)u, \,\, \text{ in }\,\,\Omega , \end{aligned}$$
in the distributional sense, with \(V\in L^\infty (\Omega )\), where \(u\equiv 0\) on \(\partial \Omega .\) We prove a sharp inequality involving \(||V||_{L^{\infty }(\Omega )}\) and the first eigenvalue of the Laplacian on geodesic balls in simply connected spaces with constant curvature, which slightly generalises the well-known Faber–Krahn isoperimetric inequality. Moreover, in a Riemannian manifold which is not necessarily simply connected, we obtain a lower bound for \(||V||_{L^{\infty }(\Omega )}\) in terms of its isoperimetric or Cheeger constant. As an application, we show that if \(\Omega \) is a domain on a m-dimensional minimal submanifold of \({\mathbb {R}}^n\) which lies in a ball of radius R, then
$$\begin{aligned} ||V||_{L^{\infty }(\Omega )}\ge \left( \frac{m}{2R}\right) ^{2}. \end{aligned}$$
  相似文献   

14.
We consider the problem
$$\varepsilon^{2s} (-\partial_{xx})^s \tilde{u}(\tilde{x}) -V(\tilde{x})\tilde{u}(\tilde{x})(1-\tilde{u}^2(\tilde{x}))=0 \quad{\rm in} \mathbb{R},$$
where \({(-\partial_{xx})^s}\) denotes the usual fractional Laplace operator, \({\varepsilon > 0}\) is a small parameter and the smooth bounded function V satisfies \({{\rm inf}_{\tilde{x} \in \mathbb{R}}V(\tilde{x}) > 0}\). For \({s\in(\frac{1}{2},1)}\), we prove the existence of separate multi-layered solutions for any small \({\varepsilon}\), where the layers are located near any non-degenerate local maximal points and non-degenerate local minimal points of function V. We also prove the existence of clustering-layered solutions, and these clustering layers appear within a very small neighborhood of a local maximum point of V.
  相似文献   

15.
We prove the local boundedness of variational solutions and parabolic minimizers to evolutionary problems, where the integrand f is convex and satisfies a non-standard p, q-growth condition with
$$1 < p \leq q \leq p \tfrac{n+2}{n}.$$
A function \({u\colon \Omega_T := \Omega \times (0,T) \to \mathbb{R}}\) is called parabolic minimizer if it satisfies the minimality condition
$$\int_{\Omega_T} u \cdot \partial_t \varphi +f(x, Du) {\rm d} z \leq \int_{\Omega_T} f(x, Du + D \varphi) {\rm d}z$$
for every \({\varphi \in C^\infty_0(\Omega_T)}\). Moreover, we will show local boundedness for parabolic minimizers, if f satisfies an anisotropic growth condition.
  相似文献   

16.
This paper is concerned with the blow-up of solutions to the following nonlocal p-Laplace equation:
$$u_t-\mathrm{div}(|\nabla{u}|^{p-2}\nabla{u})=|u|^{q-1}u-\frac{1}{|\Omega|} \int\limits_\Omega{|u|^{q-1}u}dx,\quad x\in\Omega,\quad 0 < t < T,$$
under homogeneous Neumann boundary conditions in a bounded smooth domain \({\Omega\subset\mathrm{R}^N}\). For all \({p > 2, q > p-1}\), a blow-up result for the solutions to the above equation with positive initial energy is established. This result improves a recent result by Qu and Liang (Abstr Appl Anal 3:551–552, 2013) which asserts the blow-up of solutions for \({p-1 < q\leq\frac{Np}{(N-p)_+}-1}\).
  相似文献   

17.
In this paper, we introduce one-parameter homothetic motions in the generalized complex number plane (\({\mathfrak{p}}\)-complex plane)
$$\mathbb{C}_{J}=\left\{x+Jy:\,\,\, x,y \in \mathbb{R},\quad J^2=\mathfrak{p},\quad \mathfrak{p} \in \{-1,0,1\} \right\} \subset \mathbb{C}_\mathfrak{p}$$
where
$$\mathbb{C}_\mathfrak{p}=\{x+Jy:\,\,\, x,y \in \mathbb{R}, \quad J^2=\mathfrak{p}\}$$
such that \({-\infty < \mathfrak{p} < \infty}\). The velocities, accelerations and pole points of the motion are analysed. Moreover, three generalized complex number planes, of which two are moving and the other one is fixed, are considered and a canonical relative system for one-parameter planar homothetic motion in \({\mathbb{C}_{J}}\) is defined. Euler-Savary formula, which gives the relationship between the curvatures of trajectory curves, during the one-parameter homothetic motions, is obtained with the aim of this canonical relative system.
  相似文献   

18.
We establish the classification of minimal mass blow-up solutions of the \({L^{2}}\) critical inhomogeneous nonlinear Schrödinger equation
$$i\partial_t u + \Delta u + |x|^{-b}|u|^{\frac{4-2b}{N}}u = 0,$$
thereby extending the celebrated result of Merle (Duke Math J 69(2):427–454, 1993) from the classic case \({b=0}\) to the case \({0< b< {\rm min} \{2,N\} }\), in any dimension \({N \geqslant 1}\).
  相似文献   

19.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

20.
We consider the Laplacian with attractive Robin boundary conditions,
$$\begin{aligned} Q^\Omega _\alpha u=-\Delta u, \quad \dfrac{\partial u}{\partial n}=\alpha u \text { on } \partial \Omega , \end{aligned}$$
in a class of bounded smooth domains \(\Omega \in \mathbb {R}^\nu \); here \(n\) is the outward unit normal and \(\alpha >0\) is a constant. We show that for each \(j\in \mathbb {N}\) and \(\alpha \rightarrow +\infty \), the \(j\)th eigenvalue \(E_j(Q^\Omega _\alpha )\) has the asymptotics
$$\begin{aligned} E_j(Q^\Omega _\alpha )=-\alpha ^2 -(\nu -1)H_\mathrm {max}(\Omega )\,\alpha +{\mathcal O}(\alpha ^{2/3}), \end{aligned}$$
where \(H_\mathrm {max}(\Omega )\) is the maximum mean curvature at \(\partial \Omega \). The discussion of the reverse Faber-Krahn inequality gives rise to a new geometric problem concerning the minimization of \(H_\mathrm {max}\). In particular, we show that the ball is the strict minimizer of \(H_\mathrm {max}\) among the smooth star-shaped domains of a given volume, which leads to the following result: if \(B\) is a ball and \(\Omega \) is any other star-shaped smooth domain of the same volume, then for any fixed \(j\in \mathbb {N}\) we have \(E_j(Q^B_\alpha )>E_j(Q^\Omega _\alpha )\) for large \(\alpha \). An open question concerning a larger class of domains is formulated.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号