首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
Let \(\Omega \) be a bounded, uniformly totally pseudoconvex domain in \(\mathbb {C}^2\) with smooth boundary \(b\Omega \). Assume that \(\Omega \) is a domain admitting a maximal type F. Here, the condition maximal type F generalizes the condition of finite type in the sense of Range (Pac J Math 78(1):173–189, 1978; Scoula Norm Sup Pisa, pp 247–267, 1978) and includes many cases of infinite type. Let \(\alpha \) be a d-closed (1, 1)-form in \(\Omega \). We study the Poincaré–Lelong equation
$$\begin{aligned} i\partial \bar{\partial }u=\alpha \quad \text {on}\, \Omega \end{aligned}$$
in \(L^1(b\Omega )\) norm by applying the \(L^1(b\Omega )\) estimates for \(\bar{\partial }_b\)-equations in [11]. Then, we also obtain a prescribing zero set of Nevanlinna holomorphic functions in \(\Omega \).
  相似文献   

2.
Let \(\Omega := ( a,b ) \subset \mathbb {R}\), \(m\in L^{1} ( \Omega ) \) and \(\phi :\mathbb {R\rightarrow R}\) be an odd increasing homeomorphism. We consider the existence of positive solutions for problems of the form
$$\begin{aligned} \left\{ \begin{array} [c]{ll} -\phi ( u^{\prime } ) ^{\prime }=m ( x ) f ( u) &{}\quad \text {in } \Omega ,\\ u=0 &{}\quad \text {on } \partial \Omega , \end{array} \right. \end{aligned}$$
where \(f: [ 0,\infty ) \rightarrow [ 0,\infty ) \) is a continuous function which is, roughly speaking, superlinear with respect to \(\phi \). Our approach combines the Guo-Krasnoselski? fixed-point theorem with some estimates on related nonlinear problems. We mention that our results are new even in the case \(m\ge 0\).
  相似文献   

3.
We prove existence of \({u\in C^{k}(\overline{\Omega};\mathbb{R}^{n})}\) satisfying
$\left\{\begin{array}{ll} det\nabla u(x) =f(x) \, x\in \Omega\\ u(x) =x \quad\quad\quad\quad x\in\partial\Omega\end{array}\right.$
where k ≥ 1 is an integer, \({\Omega}\) is a bounded smooth domain and \({f\in C^{k}(\overline{\Omega}) }\) satisfies
$\int\limits_{\Omega}f(x) dx={\rm meas} \Omega$
with no sign hypothesis on f.
  相似文献   

4.
We study the behavior of positive solutions of the following Dirichlet problem
$$\left \{ \begin{array}{ll} -\Delta_{p}u=\lambda u^{s-1}+u^{q-1} &\quad {\rm in}\enspace \Omega \\ u_{\mid\partial \Omega}=0 \end{array}\right. $$
when sp ?. Here \({p >1 , s\,{\in}\,]1,p]}\) and q > p with \({q\leq\frac{Np}{N-p}}\) if N > p.
  相似文献   

5.
We prove the \(C^{1,\beta }\)-boundary regularity and a comparison principle for weak solutions of the problem
$$\begin{aligned} \left\{ \begin{array}{ll} -\Delta _{p}u-\lambda \psi _{p}(u)=f(x)&{}\quad \text {in }\Omega , \\ u=0&{}\quad \text {on }\partial \Omega , \end{array} \right. \end{aligned}$$
where \(\Omega \) is a bounded domain in \(\mathbb {R}^{N},N>1\ \)with smooth boundary \(\partial \Omega ,\ \ \Delta _{p}u=\mathrm{div}(|\nabla u|^{p-2}\nabla u),\psi _{p}(u)=|u|^{p-2}u,p>1,\ \)and f is allowed to be unbounded.
  相似文献   

6.
Let \(\mathcal {D}\) be a bounded, smooth domain in \(\mathbb {R}^N\) , N ≥ 3, \(P\in \mathcal {D}\) . We consider the boundary value problem in \(\Omega = \mathcal {D} \setminus B_\delta(P)\) ,
$\begin{aligned}\Delta u + |u|^{p-1} u = 0\, \quad in\, \Omega,\\u = 0\quad on\, \partial\Omega,\end{aligned}$
with p supercritical, namely \(p > \frac{N+2}{N-2}\) . Given any positive integer m, we find a sequence \(p_1 < p_2 < p_3 < \cdots , \quad with \lim_{k\to+\infty} p_k = +\infty \), such that if p is given, with pp j for all j, then for all δ > 0 sufficiently small, this problem has a sign-changing solution which has exactly m + 1 nodal domains.
  相似文献   

7.
In this paper we perform a blow-up and quantization analysis of the fractional Liouville equation in dimension 1. More precisely, given a sequence \(u_k :\mathbb {R}\rightarrow \mathbb {R}\) of solutions to
$$\begin{aligned} (-\Delta )^\frac{1}{2} u_k =K_ke^{u_k}\quad \text {in} \quad \mathbb {R}, \end{aligned}$$
(1)
with \(K_k\) bounded in \(L^\infty \) and \(e^{u_k}\) bounded in \(L^1\) uniformly with respect to k, we show that up to extracting a subsequence \(u_k\) can blow-up at (at most) finitely many points \(B=\{a_1,\ldots , a_N\}\) and that either (i) \(u_k\rightarrow u_\infty \) in \(W^{1,p}_{{{\mathrm{loc}}}}(\mathbb {R}{\setminus } B)\) and \(K_ke^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}K_\infty e^{u_\infty }+ \sum _{j=1}^N \pi \delta _{a_j}\), or (ii) \(u_k\rightarrow -\infty \) uniformly locally in \(\mathbb {R}{\setminus } B\) and \(K_k e^{u_k} {\mathop {\rightharpoonup }\limits ^{*}}\sum _{j=1}^N \alpha _j \delta _{a_j}\) with \(\alpha _j\ge \pi \) for every j. This result, resting on the geometric interpretation and analysis of (1) provided in a recent collaboration of the authors with T. Rivière and on a classical work of Blank about immersions of the disk into the plane, is a fractional counterpart of the celebrated works of Brézis–Merle and Li–Shafrir on the 2-dimensional Liouville equation, but providing sharp quantization estimates (\(\alpha _j=\pi \) and \(\alpha _j\ge \pi \)) which are not known in dimension 2 under the weak assumption that \((K_k)\) be bounded in \(L^\infty \) and is allowed to change sign.
  相似文献   

8.
In this paper we prove the existence of at least three distinct solutions to the following perturbed Navier problem:
$$\left\{\begin{array}{ll}\Delta (|{\Delta u}|^{p-2}\Delta u) = f(x,u) + \lambda g(x,u) \quad{\rm in}\,\,\,\Omega \\ u=\Delta u = 0 \qquad\qquad\qquad\qquad\qquad\quad{\rm on}\,\,\, \partial \Omega,\end{array}\right.$$
where \({{\Omega \subset \mathbb {R}^N}}\) is an open bounded set with smooth boundary \({\partial \Omega}\) and \({\lambda \in \mathbb {R}}\) . Under very mild conditions on g and some assumptions on the behaviour of the potential of f at 0 and +∞, our result assures the existence of at least three distinct solutions to the above problem for λ small enough. Moreover such solutions belong to a ball of the space \({W^{2,p}(\Omega)\cap W_0^{1,p}(\Omega)}\) centered in the origin and with radius not dependent on λ.
  相似文献   

9.
We consider the following fractional elliptic problem:
$$\begin{aligned} (P)\left\{ \begin{array}{ll} (-\Delta )^s u = f(u) H(u-\mu )&{} \quad \text{ in } \ \Omega ,\\ u =0 &{}\quad \text{ on } \ \mathbb{{R}}^n {\setminus } \Omega , \end{array} \right. \end{aligned}$$
where \((-\Delta )^s, s\in (0,1)\) is the fractional Laplacian, \(\Omega \) is a bounded domain of \(\mathbb{{R}}^n,(n\ge 2s)\) with smooth boundary \(\partial \Omega ,\) H is the Heaviside step function, f is a given function and \(\mu \) is a positive real parameter. The problem (P) can be considered as simplified version of some models arising in different contexts. We employ variational techniques to study the existence and multiplicity of positive solutions of problem (P).
  相似文献   

10.
We consider the problem
$$\begin{aligned} \epsilon ^2 \Delta u-V(y)u+u^p\,=\,0,\quad u>0\quad \text{ in }\quad \Omega , \quad \frac{\partial u}{\partial \nu }\,=\,0\quad \text{ on }\quad \partial \Omega , \end{aligned}$$
where \(\Omega \) is a bounded domain in \({\mathbb {R}}^2\) with smooth boundary, the exponent p is greater than 1, \(\epsilon >0\) is a small parameter, V is a uniformly positive, smooth potential on \(\bar{\Omega }\), and \(\nu \) denotes the outward unit normal of \(\partial \Omega \). Let \(\Gamma \) be a curve intersecting orthogonally \(\partial \Omega \) at exactly two points and dividing \(\Omega \) into two parts. Moreover, \(\Gamma \) satisfies stationary and non-degeneracy conditions with respect to the functional \(\int _{\Gamma }V^{\sigma }\), where \(\sigma =\frac{p+1}{p-1}-\frac{1}{2}\). We prove the existence of a solution \(u_\epsilon \) concentrating along the whole of \(\Gamma \), exponentially small in \(\epsilon \) at any fixed distance from it, provided that \(\epsilon \) is small and away from certain critical numbers. In particular, this establishes the validity of the two dimensional case of a conjecture by Ambrosetti et al. (Indiana Univ Math J 53(2), 297–329, 2004).
  相似文献   

11.
In this paper, we prove some congruences conjectured by Z.-W. Sun: For any prime \(p>3\), we determine
$$\begin{aligned} \sum \limits _{k = 0}^{p - 1} {\frac{{{C_k}C_k^{(2)}}}{{{{27}^k}}}} \quad {\text { and }}\quad \sum \limits _{k = 1}^{p - 1} {\frac{{\left( {\begin{array}{l} {2k} \\ {k - 1} \\ \end{array}} \right) \left( { \begin{array}{l} {3k} \\ {k - 1} \\ \end{array} } \right) }}{{{{27}^k}}}} \end{aligned}$$
modulo \(p^2\), where \(C_k=\frac{1}{k+1}\left( {\begin{array}{c}2k\\ k\end{array}}\right) \) is the k-th Catalan number and \(C_k^{(2)}=\frac{1}{2k+1}\left( {\begin{array}{c}3k\\ k\end{array}}\right) \) is the second-order Catalan numbers of the first kind. And we prove that
$$\begin{aligned} \sum _{k=1}^{p-1}\frac{D_k}{k}\equiv -q_p(2)+pq_p(2)^2\pmod {p^2}, \end{aligned}$$
where \(D_n=\sum _{k=0}^{n}\left( {\begin{array}{c}n\\ k\end{array}}\right) \left( {\begin{array}{c}n+k\\ k\end{array}}\right) \) is the n-th Delannoy number and \(q_p(2)=(2^{{p-1}}-1)/p\) is the Fermat quotient.
  相似文献   

12.
In this paper we study a Dirichlet-to-Neumann operator with respect to a second order elliptic operator with measurable coefficients, including first order terms, namely, the operator on \(L^2(\partial \Omega )\) given by \(\varphi \mapsto \partial _{\nu }u\) where u is a weak solution of
$$\begin{aligned} \left\{ \begin{aligned}&-\mathrm{div}\, (a\nabla u) +b\cdot \nabla u -\mathrm{div}\, (cu)+du =\lambda u \ \ \text {on}\ \Omega ,\\&u|_{\partial \Omega } =\varphi . \end{aligned} \right. \end{aligned}$$
Under suitable assumptions on the matrix-valued function a, on the vector fields b and c, and on the function d, we investigate positivity, sub-Markovianity, irreducibility and domination properties of the associated Dirichlet-to-Neumann semigroups.
  相似文献   

13.
This paper is devoted to a substantial generalization of previous work on the analytic hypoellipticity of sums of squares \(P=\sum _1^4X^2_j\) of real vector fields with real analytic coefficient in three variables. For p(xy) quasi-homogeneous in (xy), consider the vector fields
$$\begin{aligned} X_1 = \frac{\partial }{\partial x}, \quad X_2=-\frac{\partial }{\partial y} + p(x,y)\frac{\partial }{\partial t}, \quad X_3=x^{n_1}\frac{\partial }{\partial t}, \quad X_4=y^{n_2}\frac{\partial }{\partial t}, \end{aligned}$$
\( n_1, n_2 \ne 0\). We show that the operator
$$\begin{aligned} P=\sum _1^4 X_j^2, \end{aligned}$$
well known to be \(C^\infty \)-hypoelliptic, is actually analytic hypoelliptic near the origin in \({\mathcal {R}}^3\).
  相似文献   

14.
We present a way to study a wide class of optimal design problems with a perimeter penalization. More precisely, we address existence and regularity properties of saddle points of energies of the form
$$\begin{aligned} (u,A) \quad \mapsto \quad \int _\Omega 2fu \,\mathrm {d}x \; - \int _{\Omega \cap A} \sigma _1\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; - \int _{\Omega {\setminus } A} \sigma _2\mathscr {A}u\cdot \mathscr {A}u \, \,\mathrm {d}x \; + \; \text {Per }(A;\overline{\Omega }), \end{aligned}$$
where \(\Omega \) is a bounded Lipschitz domain, \(A\subset \mathbb {R}^N\) is a Borel set, \(u:\Omega \subset \mathbb {R}^N \rightarrow \mathbb {R}^d\), \(\mathscr {A}\) is an operator of gradient form, and \(\sigma _1, \sigma _2\) are two not necessarily well-ordered symmetric tensors. The class of operators of gradient form includes scalar- and vector-valued gradients, symmetrized gradients, and higher order gradients. Therefore, our results may be applied to a wide range of problems in elasticity, conductivity or plasticity models. In this context and under mild assumptions on f, we show for a solution (wA), that the topological boundary of \(A \cap \Omega \) is locally a \(\mathrm {C}^1\)-hypersurface up to a closed set of zero \(\mathscr {H}^{N-1}\)-measure.
  相似文献   

15.
Given a compact Riemannian manifold (Mg) without boundary of dimension \(m\ge 3\) and under some symmetry assumptions, we establish existence of one positive and multiple nodal solutions to the Yamabe-type equation
$$\begin{aligned} -\text {div}_{g}(a\nabla u)+bu=c|u|^{2^{*}-2}u\quad \text { on }M, \end{aligned}$$
where \(a,b,c\in \mathcal {C}^{\infty }(M), a\) and c are positive, ? div\(_{g}(a\nabla )+b\) is coercive, and \(2^{*}=\frac{2m}{m-2}\) is the critical Sobolev exponent. In particular, if \(R_{g}\) denotes the scalar curvature of (Mg), we give conditions which guarantee that the Yamabe problem
$$\begin{aligned} \Delta _{g}u+\frac{m-2}{4(m-1)}R_{g}u=\kappa u^{2^{*}-2}\quad \text { on }M \end{aligned}$$
admits a prescribed number of nodal solutions.
  相似文献   

16.
For a real-valued continuous function f(x) on \([0,\infty )\), we define
$$\begin{aligned} s(x)=\int _{0}^{x} f(u)du\quad \text {and}\quad \sigma _{\alpha } (x)= \int _{0}^{x}\left( 1-\frac{u}{x}\right) ^{\alpha }f(u)du \end{aligned}$$
for \(x>0\). We say that \(\int _{0}^{\infty } f(u)du\) is \((C, \alpha )\) integrable to L for some \(\alpha >-1\) if the limit \(\lim _{x \rightarrow \infty } \sigma _{\alpha } (x)=L\) exists. It is known that \(\lim _{x \rightarrow \infty } s(x) =L\) implies \(\lim _{x \rightarrow \infty }\sigma _{\alpha } (x) =L\) for all \(\alpha >-1\). The aim of this paper is twofold. First, we introduce some new Tauberian conditions for the \((C, \alpha )\) integrability method under which the converse implication is satisfied, and improve classical Tauberian theorems for the \((C,\alpha )\) integrability method. Next we give short proofs of some classical Tauberian theorems as special cases of some of our results.
  相似文献   

17.
We prove the null controllability in large time of the following linear parabolic equation involving the Grushin operator with an inverse-square potential
$$u_t-\Delta_{x} u-|x|^{2}\Delta_{y}u-\frac{\mu}{|x|^2}u=v1_\omega$$
in a bounded domain \({\Omega=\Omega_1\times \Omega_2\subset \mathbb{R}^{N_1}\times \mathbb{R}^{N_2} (N_1\geq 3, N_2\geq 1}\)) intersecting the surface {x = 0} under an additive control supported in an open subset \({\omega=\omega_1\times \Omega_2}\) of \({\Omega}\).
  相似文献   

18.
In a general unbounded uniform C 2-domain \({\Omega \subset \mathbb{R}^n, n \geq 3}\) , and \({1\leq q\leq \infty}\) consider the spaces \({\tilde{L}^q(\Omega)}\) defined by \({\tilde{L^q}(\Omega) := \left\{\begin{array}{ll}L^q(\Omega)+L^2(\Omega),\quad q < 2, \\ L^q(\Omega)\cap L^2(\Omega),\quad q\geq 2, \end{array}\right.}\) and corresponding subspaces of solenoidal vector fields, \({\tilde{L}^q_\sigma(\Omega)}\) . By studying the complex and real interpolation spaces of these we derive embedding properties for fractional order spaces related to the Stokes problem and L p ? L q -type estimates for the corresponding semigroup.  相似文献   

19.
We establish multiplicity and nonexistence of solutions to the quasilinear problem
$$\begin{aligned} -\Delta _{p}v=\left| v\right| ^{q-2}v\,\,\text {in}\,\,\Omega ,\qquad v=0\text { on }{\partial {\Omega }}, \end{aligned}$$
in some bounded smooth domains \(\Omega \) in \(\mathbb {R}^{N}\), for \(1<p<N\) and some supercritical exponents \(q>p^{*}:=\frac{Np}{N-p}\). Multiplicity is established in domains arising from the Hopf maps. We show that, after a suitable change of metric, these maps become p-harmonic morphisms, i.e., they preserve the p-Laplace operator up to a factor. We use them to reduce the supercritical problem to an anisotropic quasilinear critical problem in a domain of lower dimension.
  相似文献   

20.
We apply the compactness results obtained in the first part of this work, to prove existence and multiplicity results for finite energy solutions to the nonlinear elliptic equation
$$-\triangle u + V \left(\left|x\right|\right) u = g \left(\left|x\right|, u\right) \quad {\rm in} \Omega \subseteq \mathbb{R}^{N},\,N \geq 3,$$
where \({\Omega}\) is a radial domain (bounded or unbounded) and u satisfies u =  0 on \({\partial\Omega}\) if \({\Omega \neq\mathbb{R}^{N}}\) and \({u \rightarrow 0}\) as \({\left|x\right| \rightarrow \infty}\) if \({\Omega}\) is unbounded. The potential V may be vanishing or unbounded at zero or at infinity and the nonlinearity g may be superlinear or sublinear. If g is sublinear, the case with a forcing term \({g\left(\left|\cdot\right|, 0\right) \neq 0}\) is also considered. Our results allow to deal with V and g exhibiting behaviours at zero or at infinity which are new in the literature and, when \({\Omega = \mathbb{R}^{N}}\), do not need to be compatible with each other.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号