首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 25 毫秒
1.
Interfacial ion-association adsorption and aggregation of a water-soluble porphyrin, tetrakis(4-sulfonatephenyl)porphyrin (TPPS) diacid, which was promoted by a cationic cetyltrimethylammonium ion (CTA(+)), was studied by second harmonic generation (SHG) spectroscopy. Comparing the interfacial SH spectrum with the transmission absorption spectrum of TPPS in the aqueous solution elucidated the aggregation behavior of TPPS at the heptane/water interface. The time-dependent SHG spectra for TPPS aggregation and the interfacial tension lowering in the presence of CTA(+) were discussed on the basis of an electrostatic adsorption model. Then, it was suggested that TPPS diacid was highly concentrated by the ion-association with CTA(+) at the interface, which was the intermediate state before the final aggregated state.  相似文献   

2.
The thermodynamics of adsorption of amphiphilic surface-active compounds at the interface between two immiscible liquids is considered. At the interface, these molecules are supposed to replace a few of the adsorbed molecules of both solvents. Classical isotherms of adsorption (Frumkin, Frumkin-Damaskin, Langmuir, Henry) were based on the model of non-penetrable interface, where an adsorbate can substitute only molecules of one solvent. At the interface between two immiscible electrolytes, nonpolar oil/water interfaces, and liquid membranes amphiphilic molecules can substitute molecules of both solvent and classic isotherms cannot be used. The generalization of Frumkin isotherm for permeable and non-permeable interfaces, known as the Markin-Volkov isotherm, gives the possibility to analyze adsorption in a general case. The adsorption isotherms of pentafluorobenzoic acid at the octane/water interface at different pHs were measured by the drop-weight method. The thermodynamic parameters of pentafluorobenzoic acid (PFBA) adsorption at octane/water interface were determined. From the measurements of PFBA adsorption, the structure of the octane/water interface was determined. Substitution of one adsorbed octane molecule requires approximately three adsorbed PFBA molecules. This result shows that the orientation of solvent molecules at the interface is different from the bulk. Adsorbed octane molecules have a lateral orientation with respect to the interface. Gibbs free energy of adsorption equilibrium and thermodynamic parameters of PFBA adsorption show that the adsorption of PFBA at the octane/water interface is accompanied by a reduction in the attraction between adsorbed PFBA molecules as the pH decreases to the acidic region. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 10, pp. 1194–1200. The text was submitted by the authors in English.  相似文献   

3.
We studied the adsorption kinetics of supported ultrathin films of dye-labeled polystyrene (l-PS) by combining dielectric spectroscopy (DS) and the interface-specific nonlinear optical second harmonic generation (SHG) technique. While DS is sensitive to the fraction of mobile dye moieties (chromophores), the SHG signal probes their anisotropic orientation. Time-resolved measurements were performed above the glass transition temperature on two different sample geometries. In one configuration, the l-PS layer is placed in contact with the aluminum surface, while in the other one, the deposition is done on a strongly adsorbed layer of neat PS. From the time dependence of the dielectric strength and SHG signal of the l-PS layer in contact with the metal, we detected two different kinetics regimes. We interpret these regimes in terms of the interplay between adsorption and orientation of the adsorbing labeling moieties. At early times, dye moieties get adsorbed adopting an orientation parallel to the surface. When adsorption proceeds to completeness, the kinetics slows down and the dye moieties progressively orient normal to the surface. Conversely, when the layer of l-PS layer is deposited on the strongly adsorbed layer of neat PS, both the dielectric strength and the SHG signal do not show any variation with time. This means that no adsorption takes place.  相似文献   

4.
The adsorption of bovine serum albumin (BSA) at the air/water interface and its effect on the transport of dipalmitoylphosphatidylcholine (DPPC) to form a surface film were studied with tensiometry, infrared reflection absorption spectroscopy (IRRAS), and ellipsometry. For 1, 10, 100, and 1000 ppm BSA solutions, the steady-state tension ranges from 55 to 50 mN m−1. At pulsating area (at 20 cycles min−1), both the minimum and maximum tensions decrease with increasing bulk concentration. Even though the steady-state tension is similar for 100 and 1000 ppm BSA, IRRAS and ellipsometry results indicate that the adsorbed density is higher for 1000 ppm BSA. For 1000 ppm/1000 ppm BSA/DPPC mixture, the tension behavior was found to be similar to that of 1000 ppm BSA when alone. Results from IRRAS and ellipsometry also demonstrate that BSA is the dominant adsorbed component at the air/water interface. Thus, at 1000 ppm, by adsorbing fast and possibly irreversibly, BSA interferes with the transport and adsorption of DPPC and inhibits its ability to lower the surface tension. However, when DPPC is introduced via a spread monolayer mechanism, DPPC expels partly or completely the adsorbed BSA monolayer and then controls the tension behavior with little or no inhibition by BSA. Thus, the competitive adsorption of DPPC and BSA depends strongly on the path or mechanism of introducing DPPC to the surface and involves path-dependent nonequilibrium adsorption phenomena.  相似文献   

5.
We present a study on the initial wetting behaviors of two low molecular weight alkanes, heptane and octane, at the vapor/water interface using both neutron and X-ray reflectometry. Combined X-ray and neutron reflectivity studies data showed that a uniform film, which has never been reported, was formed continuously at 25 degrees C. As the adsorptive deposition continued, each adsorbed film was saturated at a specific equilibrium thickness: 48 and 36 A for deuterated heptane and octane, respectively, and 21 A for hydrogenated octane. The thickness of the adsorbed layer measured by neutron reflectivity is in agreement with that measured using X-ray reflectivity. Our observations of continuous and saturated adsorption behaviors are analyzed qualitatively using a kinetic adsorption model.  相似文献   

6.
Sum frequency vibrational spectroscopy was used to study adsorption of leucine molecules at air-water interface from solutions with different concentrations and pH values. The surface density and the orientation of the isopropyl head group of the adsorbed leucine molecules could be deduced from the measurements. It was found that the orientation depends on the surface density, but only weakly on bulk pH value at the saturated surface density. The vibrational spectra of the interfacial water molecules appeared to be strongly affected by the charge state of the adsorbed leucine molecules. Enhancement and inversion of polar orientation of interfacial water molecules by surface charges or field controllable by the bulk pH value were observed.  相似文献   

7.
Resonantly enhanced surface second harmonic generation (SHG) measurements carried out at pH 7 and room temperature were performed to study how surface-bound carboxylic acid and methyl ester functional groups control the interaction of chromate ions with fused silica/water interfaces. These functional groups were chosen because of their high abundance in humic and fulvic acids and related biopolymers commonly found in soils. They were anchored to the silica surface using organosilane chemistry to avoid competing complexation processes in the aqueous solution as well as competitive adsorption of the organic compounds and chromate. The SHG experiments were carried out at room temperature and pH 7 while using environmentally representative chromate concentrations ranging from 1 x10(-6) to 2 x 10(-4) M. Chromate is found to bind to the acid- and ester-functionalized silica/water interfaces in a reversible fashion. In contrast to the plain silica/water interface, chromate binding studies performed on the functionalized silica/water interfaces show S-shaped adsorption isotherms that can be modeled using the Frumkin-Fowler-Guggenheim (FFG) model. This model predicts a coverage-dependent binding constant of K(ads) x exp(gtheta). Values for g are found to be 3.2(2), 2.1(2), and 1.3(2) for the carboxylic acid-, the ester-, and the nonfunctionalized silica/water interfaces, respectively, and are consistent with stabilizing lateral adsorbate-adsorbate interactions among the Cr(VI) species adsorbed to the functionalized surfaces. The FFG model allows for the parametrization of the solid-liquid partition coefficient and chromate retardation factors in silica-rich soil particles whose surfaces contain organic adlayers rich in carboxylic acid and methyl ester groups. The straightforward model presented here predicts that chromate retardation increases by up to 200% when carboxylic acid functional groups are present at the silica/water interface. Increases up to 50% are predicted for methyl ester-containing organic adlayers, and the retardation factor remains effectively near unity for the plain silica/water interface (no siloxanes present).  相似文献   

8.
9.
首次用激光产生的第二谐振光(SHG)检测到金属/水溶液界面上阴离子在多晶铜电极表面上的吸附,阴离子吸附特性对SHG强度影响明显,由多晶铜电极在(0.5-x)mol/L NaClO_4+xmol/L NaBr溶液中的SHG强度-电位曲线表明铜电极表面对ClO_4~-的吸附非常弱,对Br~-有特定的吸附,SHG强度随Br~-浓度增加而增强,结果表明SHG是定量研究电化学界面区吸附特性的灵敏有效的探针,可揭示金属与吸附质间相互作用的本质。  相似文献   

10.
In the Gibbs adsorption equation, the application of solvent activity for the calculation of the surface/interfacial excess is proposed for nonideal or associating or pseudocomponents such as asphaltenes. For the aforementioned systems, only the mass-based phenomenological interfacial excess can be determined based on interfacial tension versus activity data. The use of the mole fraction is compared to the use of the activity when the adsorbed amount of associating asphaltenes is calculated at a water/toluene interface. Langmuir-type isotherms describe the adsorption of asphaltenes at toluene/water interfaces. Asphaltenes were treated to remove the resins and natural surfactants using cyclic precipitation and dissolution of asphaltenes at a fixed aliphatic/aromatic ratio. Different fractions of asphaltenes were obtained by changing the aliphatic/aromatic ratio of the precipitating solvent. The limiting molar masses of asphaltenes measured by vapor pressure osmometry are different for fractions precipitated at different heptane to toluene ratios. The mass-based adsorbed amounts at the water/toluene interface, at a 0.1 asphaltene-to-toluene mass-ratio, varied in the range of 0.8-2.8 mg/m(2), depending on the molar mass of asphaltenes.  相似文献   

11.
The thermodynamics of adsorption of amphiphilic surface-active compounds at the interface between two immiscible liquids is considered. At the interface, these molecules are supposed to replace a few of the adsorbed molecules of both solvents. Classical isotherms of adsorption (Frumkin, Langmuir, Henry) were based on the model of nonpenetrable interface, where an adsorbate can substitute only molecules of one solvent. However, at the interface between two immiscible electrolytes, like nonpolar oil-water interfaces, or liquid membrane amphiphilic molecules can substitute molecules of both solvents; therefore, classical isotherms are not applicable in these cases. The generalization of Langmuir and Frumkin isotherms for permeable and nonpermeable interfaces, known as the Markin-Volkov (MV) isotherm, gives the possibility to analyze adsorption and the interfacial structure in a general case. In the present paper, the adsorption isotherms of pentafluorobenzoic acid at the octane-water interface at various pH were measured by the drop-weight method. The thermodynamic parameters of pentafluorobenzoic acid (PFBA) adsorption at the octane-water interface were found. From the measurements of PFBA adsorption, the structure of the octane-water interface was determined. Substitution of one adsorbed octane molecule requires approximately three adsorbed PFBA molecules. This result shows that the orientation of solvent molecules at the interface is different from the bulk solution. Adsorbed octane molecules have a lateral orientation with respect to the interface. Gibbs free energy of adsorption equilibrium and thermodynamic parameters of PFBA adsorption show that the adsorption of PFBA at the octane-water interface is accompanied by a reduction in the attraction between adsorbed PFBA molecules as the pH decreases to the acidic region.  相似文献   

12.
Second harmonic generation (SHG), a surface specific, nonlinear optical spectroscopy, was used to study the interfacial solvation of a neutral surfactant, p-nitrophenol (PNP), adsorbed to the water/cyclohexane interface in the presence of simple salts at varying salt concentrations. The purpose of this work was to determine what relationship (if any) exists between interfacial polarity and bulk solution ionic strength. Data show an apparent red shift in SHG spectra with an increase in salt anion size from fluoride to chloride to bromide at 1 M salt concentrations. A spectral red shift of the PNP electronic excitation implies an increase in local polarity. Within experimental limits, however, these observed interfacial spectral shifts mimic shifts in absorbance spectra observed for PNP in bulk electrolyte solutions. Given the similarities between bulk and surface behavior, we conclude that observed shifts in SHG spectra may be attributed to effects similar to those found in bulk solution. Additionally, the surface adsorption of PNP to the water/cyclohexane interface was studied to determine the surface distribution of PNP and the conjugate base, p-nitrophenoxide (PNP(-)), for a 10 mM PNP solution. PNP adsorption is favored over PNP(-) adsorption by a factor of 10, giving rise to an equilibrium surface distribution that is an order of magnitude greater than that found in bulk solution. These findings indicate that the amount of PNP(-) at the surface in an aqueous solution of 10 mM PNP is negligible.  相似文献   

13.
To understand and control the interfacial properties of polydiacetylenes (PDAs) vesicles with π-conjugated backbone is very important for their colorimetric sensing of chemical and biological targets. In this work, we adopted 10, 12-pentacosadiynoic acid (PCDA) as the model molecule to prepare PDAs vesicles in aqueous solution with different forms (from monomer to blue-to-purple-to-red phase) by controlling the UV irradiation dose. The variations of the interfacial conformation of PDAs vesicles during chromatic transitions were inspected by the adsorption behaviors of probe molecules (4-(4-diethylaminostyry)-1-methylpyridinium iodide, D289) on vesicle surface with surface-specific second harmonic generation (SHG) and zeta potential measurements. Resonant SHG signal from D289 adsorbed on vesicle surface attenuated sharply, and the adsorption free energy as well as the corresponding two-photon fluorescence signal decreased slightly in chromatic transitions. While, the change in the surface density of the adsorbed D289 molecules for PDAs vesicles with different forms was relatively small as estimated from zeta potential measurements. The attenuation of the SHG intensity was thus attributed to the overall order-disorder transition and the changed orientation of D289 molecules caused by the gradual distortion of carboxyl head group driven by backbone perturbation.  相似文献   

14.
Depending on the bulk composition, adsorption layers formed from mixed protein/surfactant solutions contain different amounts of protein. Clearly, increasing amounts of surfactant should decrease the amount of adsorbed proteins successively. However, due to the much larger adsorption energy, proteins are rather strongly bound to the interface and via competitive adsorption surfactants cannot easily displace proteins. A thermodynamic theory was developed recently which describes the composition of mixed protein/surfactant adsorption layers. This theory is based on models for the single compounds and allows a prognosis of the resulting mixed layers by using the characteristic parameters of the involved components. This thermodynamic theory serves also as the respective boundary condition for the dynamics of adsorption layers formed from mixed solutions and their dilational rheological behaviour. Based on experimental studies with milk proteins (β-casein and β-lactoglobulin) mixed with non-ionic (decyl and dodecyl dimethyl phosphine oxide) and ionic (sodium dodecyl sulphate and dodecyl trimethyl ammonium bromide) surfactants at the water/air and water/hexane interfaces, the potential of the theoretical tools is demonstrated.The displacement of pre-adsorbed proteins by subsequently added surfactant can be successfully studied by a special experimental technique based on a drop volume exchange. In this way the drop profile analysis can provide tensiometry and dilational rheology data (via drop oscillation experiments) for two adsorption routes — sequential adsorption of the single compounds in addition to the traditional simultaneous adsorption from a mixed solution. Complementary measurements of the surface shear rheology and the adsorption layer thickness via ellipsometry are added in order to support the proposed mechanisms drawn from tensiometry and dilational rheology, i.e. to show that the formation of mixed adsorption layer is based on a modification of the protein molecules via electrostatic (ionic) and/or hydrophobic interactions by the surfactant molecules and a competitive adsorption of the resulting complexes with the free, unbound surfactant. Under certain conditions, the properties of the sequentially formed layers differ from those formed simultaneously, which can be explained by the different locations of complex formation.  相似文献   

15.
Fibrinogen (FB) and other serum proteins leak into the aqueous alveolar lining layer due to lung injuries. The adsorption of these serum proteins at the air/aqueous interface can produce higher surface tensions than the pulmonary lipids, and acute respiratory distress syndrome (ARDS) can ensue. By having a molecular adsorption mechanism, as compared to a particulate adsorption mechanism of other longer chain lipids, dilauroylphosphatidylcholine (DLPC) lipid can expel FB from the air/aqueous interface at 25 degrees C, in water or in phosphate-buffered saline, as proven by tensiometry (also at 37 degrees C), ellipsometry, and infrared reflection-absorption spectroscopy. Moreover, before FB is displaced by DLPC at the interface, there is a substantial initial enhancement in the FB adsorption, consistent with some interaction or binding of DLPC with FB to produce a more hydrophobic protein surface. After the FB molecules have been displaced by DLPC, or when DLPC has already adsorbed at the interface, FB molecules are less favored to adsorb near the DLPC monolayer with the lecithin headgroups facing toward them. The results have implications for possible uses of DLPC lipid in potential lung surfactant formulations in treating patients with ARDS.  相似文献   

16.
Structure of Protein Layers during Competitive Adsorption   总被引:1,自引:0,他引:1  
The formation of protein layers during competitive adsorption was studied with ellipsometry. Single, binary, and ternary protein solutions of human serum albumin (HSA), IgG, and fibrinogen (Fgn) were investigated at concentrations corresponding to blood plasma diluted 1/100. As a model surface, hydrophobic hexamethyldisiloxane (HMDSO) plasma polymer modified silica was used. By using multiambient media measurements of the bare substrate prior to protein adsorption the adsorbed amount as well as the thickness and refractive index of the adsorbed protein layer could be followedin situand in real time. Under conditions used in these experiments neither IgG nor fibrinogen could fully displace serum albumin from the interface. The buildup of the protein layer occurred via different mechanisms for the different protein systems. Fgn adsorbed in a rather flat orientation at low adsorbed amounts, while at higher surface coverage the protein reoriented to a more upright orientation in order to accommodate more molecules in the adsorbed layer. IgG adsorption proceeded mainly end-on with little reorientation or conformational change on adsorption. Finally, for HSA an adsorbed layer thickness greater than the molecular dimensions was observed at high concentrations (although not at low), indicating that aggregates or multilayers formed on HMDSO plasma polymer surfaces. For all protein mixtures the adsorbed layer structure and buildup indicated that Fgn was the protein dominating the adsorbed layer, although HSA partially blocked the adsorption of this protein. At high surface concentration, HSA/Fgn mixtures show an abrupt change in both adsorbed layer thickness and refractive index suggesting, e.g., an interfacial phase transition of the mixed protein layer. A similar but less pronounced behavior was observed for HSA/IgG. For IgG/Fgn and HSA/IgG/Fgn a buildup of the adsorbed layer similar to that displayed by Fgn alone was observed.  相似文献   

17.
It has been generally accepted that there are significant quadrupolar and bulk contributions to the second-harmonic generation (SHG) reflected from the neat air/water interface, as well as common liquid interfaces. Because there has been no general methodology to determine the quadrupolar and bulk contributions to the SHG signal from a liquid interface, this conclusion was reached based on the following two experimental phenomena: the breaking of the macroscopic Kleinman symmetry and the significant temperature dependence of the SHG signal from the neat air/water interface. However, because the sum frequency generation vibrational spectroscopy (SFG-VS) measurement of the neat air/water interface observed no apparent temperature dependence, the temperature dependence in the SHG measurement has been reexamined and proven to be an experimental artifact. Here we present a complete microscopic analysis of the susceptibility tensors of the air/water interface, and show that dipolar contribution alone can be used to address the issue of the breaking of the macroscopic Kleinman symmetry at the neat air/water interface. Using this analysis, the orientation of the water molecules at the interface can be obtained, and it is consistent with the measurement from SFG-VS. Therefore, the key rationales to conclude significantly quadrupolar and bulk contributions to the SHG signal of the neat air/water interface can no longer be considered as valid as before. This new understanding of the air/water interface can shed light on our understanding of the nonlinear optical responses from other molecular interfaces as well.  相似文献   

18.
The adsorption behaviour of proteins and systems mixed with surfactants of different nature is described. In the absence of surfactants the proteins mainly adsorb in a diffusion controlled manner. Due to lack of quantitative models the experimental results are discussed partly qualitatively. There are different types of interaction between proteins and surfactant molecules. These interactions lead to protein/surfactant complexes the surface activity and conformation of which are different from those of the pure protein. Complexes formed with ionic surfactants via electrostatic interaction have usually a higher surface activity, which becomes evident from the more than additive surface pressure increase. The presence of only small amounts of ionic surfactants can significantly modify the structure of adsorbed proteins. With increasing amounts of ionic surfactants, however, an opposite effect is reached as due to hydrophobic interaction and the complexes become less surface active and can be displaced from the interface due to competitive adsorption. In the presence of non-ionic surfactants the adsorption layer is mainly formed by competitive adsorption between the compounds and the only interaction is of hydrophobic nature. Such complexes are typically less surface active than the pure protein. From a certain surfactant concentration of the interface is covered almost exclusively by the non-ionic surfactant. Mixed layers of proteins and lipids formed by penetration at the water/air or by competitive adsorption at the water/chloroform interface are formed such that at a certain pressure the components start to separate. Using Brewster angle microscopy in penetration experiments of proteins into lipid monolayers this interfacial separation can be visualised. A brief comparison of the protein adsorption at the water/air and water/n-tetradecane shows that the adsorbed amount at the water/oil interface is much stronger and the change in interfacial tension much larger than at the water/air interface. Also some experimental data on the dilational elasticity of proteins at both interfaces measured by a transient relaxation technique are discussed on the basis of the derived thermodynamic model. As a fast developing field of application the use of surface tensiometry and rheometry of mixed protein/surfactant mixed layers is demonstrated as a new tool in the diagnostics of various diseases and for monitoring the progress of therapies.  相似文献   

19.
The cationic surfactant, dioctyl ester of cystine hydrochloride (DOEC), was characterized for interfacial adsorption and aggregation behavior in water. The cmc of DOEC was measured as 1.42±0.27×10(-5) mol dm(-3) using the techniques of tensiometry, conductivity and fluorimetry. From specific conductivity measurements, the degree of dissociation (α) of the amine hydrochloride was measured as 0.612. The standard free energy change of micellization (ΔG(m)(°)) and adsorption (ΔG(a)(°)) were calculated to be -25.07 and -44.37 kJ mol(-1), respectively. The aggregated structures provide non-polar microdomains as inferred from the I(3)/I(1) emission intensity ratio of 1.05 of pyrene fluoroprobe and also a blue shift of fluorescence emission wave length (λ(emi.)) maximum down to 470 nm with enhanced intensity of ANS probe in micellar solutions. From Langmuir film balance experiments, it is shown that DOEC forms stable viscoelastic films at the interface with A(0) at 0.69 nm(2)molecule(-1) that agree with the result from surface tension measurements. Molecular modeling suggests the tilted orientation of DOEC at the interface. A large packing parameter (P) of 0.58 and the fibril structures as observed from microscopy studies demonstrate that DOEC favors one-dimensional growth to form elongated micelles.  相似文献   

20.
Silica-gel-coated QCM crystals oscillating in a thickness shear mode are used to measure adsorption of bituminous components in water-saturated heptol (1/1 vol ratio of a heptane/toluene mixture) at the oil/water interface. In addition to the viscoelasticity of the adsorbed film, the effects of the bulk liquid density and viscosity as well as the liquid trapped in interfacial cavities are taken into account for the calculation of adsorbed mass. Asphaltenes in heptol adsorb continuously at the oil/water interface, while resins (the surface-active species in maltenes) show adsorption saturation in the same solvent. For Athabasca bitumen in heptol, two adsorption regimes are observed depending on concentration. At low concentrations, a slow, non-steady-state, and irreversible adsorption takes place. At high concentrations, a steady-state adsorption with limited reversibility results in a quick adsorption saturation. The threshold concentration between these adsorption regimes is 1.5 wt % and 8 wt % for oil/water and oil/gold interfaces, respectively. The threshold concentration, the total adsorbed amount, and the flux of non-steady-state adsorption depend on the resin-to-asphaltene ratio. The threshold concentration is related to the earlier reported critical bitumen concentration characterizing the rigid-to-flexible transition of the interfacial film. We propose a new mechanism based on the change of the effective resin-to-asphaltene ratio with dilution to explain both the adsorption behavior and emulsion stability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号