首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 500 毫秒
1.
This paper investigates preconditioned iterative techniques for finite difference solutions of a high‐order Boussinesq method for modelling water waves in two horizontal dimensions. The Boussinesq method solves simultaneously for all three components of velocity at an arbitrary z‐level, removing any practical limitations based on the relative water depth. High‐order finite difference approximations are shown to be more efficient than low‐order approximations (for a given accuracy), despite the additional overhead. The resultant system of equations requires that a sparse, unsymmetric, and often ill‐conditioned matrix be solved at each stage evaluation within a simulation. Various preconditioning strategies are investigated, including full factorizations of the linearized matrix, ILU factorizations, a matrix‐free (Fourier space) method, and an approximate Schur complement approach. A detailed comparison of the methods is given for both rotational and irrotational formulations, and the strengths and limitations of each are discussed. Mesh‐independent convergence is demonstrated with many of the preconditioners for solutions of the irrotational formulation, and solutions using the Fourier space and approximate Schur complement preconditioners are shown to require an overall computational effort that scales linearly with problem size (for large problems). Calculations on a variable depth problem are also compared to experimental data, highlighting the accuracy of the model. Through combined physical and mathematical insight effective preconditioned iterative solutions are achieved for the full physical application range of the model. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

2.
In this study, a novel Mach‐uniform preconditioning method is developed for the solution of Euler equations at low subsonic and incompressible flow conditions. In contrast to the methods developed earlier in which the conservation of mass equation is preconditioned, in the present method, the conservation of energy equation is preconditioned, which enforces the divergence free constraint on the velocity field even at the limiting case of incompressible, zero Mach number flows. Despite most preconditioners, the proposed Mach‐uniform preconditioning method does not have a singularity point at zero Mach number. The preconditioned system of equations preserves the strong conservation form of Euler equations for compressible flows and recovers the artificial compressibility equations in the case of zero Mach number. A two‐dimensional Euler solver is developed for validation and performance evaluation of the present formulation for a wide range of Mach number flows. The validation cases studied show the convergence acceleration, stability, and accuracy of the present Mach‐uniform preconditioner in comparison to the non‐preconditioned compressible flow solutions. The convergence acceleration obtained with the present formulation is similar to those of the well‐known preconditioned system of equations for low subsonic flows and to those of the artificial compressibility method for incompressible flows. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

3.
This paper combines the pseudo‐compressibility procedure, the preconditioning technique for accelerating the time marching for stiff hyperbolic equations, and high‐order accurate central compact scheme to establish the code for efficiently and accurately solving incompressible flows numerically based on the finite difference discretization. The spatial scheme consists of the sixth‐order compact scheme and 10th‐order numerical filter operator for guaranteeing computational stability. The preconditioned pseudo‐compressible Navier–Stokes equations are marched temporally using the implicit lower–upper symmetric Gauss–Seidel time integration method, and the time accuracy is improved by the dual‐time step method for the unsteady problems. The efficiency and reliability of the present procedure are demonstrated by applications to Taylor decaying vortices phenomena, double periodic shear layer rolling‐up problem, laminar flow over a flat plate, low Reynolds number unsteady flow around a circular cylinder at Re = 200, high Reynolds number turbulence flow past the S809 airfoil, and the three‐dimensional flows through two 90°curved ducts of square and circular cross sections, respectively. It is found that the numerical results of the present algorithm are in good agreement with theoretical solutions or experimental data. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

4.
There are two main difficulties in numerical simulation calculations using FD/FV method for the flows in real rivers. Firstly, the boundaries are very complex and secondly, the generated grid is usually very non‐uniform locally. Some numerical models in this field solve the first difficulty by the use of physical curvilinear orthogonal co‐ordinates. However, it is very difficult to generate an orthogonal grid for real rivers and the orthogonal restriction often forces the grid to be over concentrated where high resolution is not required. Recently, more and more models solve the first difficulty by the use of generalized curvilinear co‐ordinates (ξ,η). The governing equations are expressed in a covariant or contra‐variant form in terms of generalized curvilinearco‐ordinates (ξ,η). However, some studies in real rivers indicate that this kind of method has some undesirable mesh sensitivities. Sharp differences in adjacent mesh size may easily lead to a calculation stability problem oreven a false simulation result. Both approaches used presently have their own disadvantages in solving the two difficulties that exist in real rivers. In this paper, the authors present a method for two‐dimensional shallow water flow calculations to solve both of the main difficulties, by formulating the governing equations in a physical form in terms of physical curvilinear non‐orthogonal co‐ordinates (s,n). Derivation of the governing equations is explained, and two numerical examples are employed to demonstrate that the presented method is applicable to non‐orthogonal and significantly non‐uniform grids. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

5.
This paper presents a preconditioning technique for solving a two‐dimensional system of hyperbolic equations. The main attractive feature of this approach is that, unlike a technique based on simply extending the solver for a one‐dimensional hyperbolic system, convergence and stability analysis can be investigated. This method represents a genuine numerical algorithm for multi‐dimensional hyperbolic systems. In order to demonstrate the effectiveness of this approach, applications to solving a two‐dimensional system of Euler equations in supersonic flows are reported. It is shown that the Lax–Friedrichs scheme diverges when applied to the original Euler equations. However, convergence is achieved when the same numerical scheme is employed using the same CFL number to solve the equivalent preconditioned Euler system. Copyright © 1999 John Wiley & Sons, Ltd.  相似文献   

6.
In this paper, the steady incompressible Navier–Stokes equations are discretized by the finite element method. The resulting systems of equations are solved by preconditioned Krylov subspace methods. Some new preconditioning strategies, both algebraic and problem dependent are discussed. We emphasize on the approximation of the Schur complement as used in semi implicit method for pressure‐linked equations‐type preconditioners. In the usual formulation, the Schur complement matrix and updates use scaling with the diagonal of the convection–diffusion matrix. We propose a variant of the SIMPLER preconditioner. Instead of using the diagonal of the convection–diffusion matrix, we scale the Schur complement and updates with the diagonal of the velocity mass matrix. This variant is called modified SIMPLER (MSIMPLER). With the new approximation, we observe a drastic improvement in convergence for large problems. MSIMPLER shows better convergence than the well‐known least‐squares commutator preconditioner which is also based on the diagonal of the velocity mass matrix. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

7.
This work is devoted to the application of the super compact finite difference method (SCFDM) and the combined compact finite difference method (CCFDM) for spatial differencing of the spherical shallow water equations in terms of vorticity, divergence, and height. The fourth‐order compact, the sixth‐order and eighth‐order SCFDM, and the sixth‐order and eighth‐order CCFDM schemes are used for the spatial differencing. To advance the solution in time, a semi‐implicit Runge–Kutta method is used. In addition, to control the nonlinear instability, an eighth‐order compact spatial filter is employed. For the numerical solution of the elliptic equations in the problem, a direct hybrid method, which consists of a high‐order compact scheme for spatial differencing in the latitude coordinate and a fast Fourier transform in longitude coordinate, is utilized. The accuracy and convergence rate for all methods are verified against exact analytical solutions. Qualitative and quantitative assessments of the results for an unstable barotropic mid‐latitude zonal jet employed as an initial condition are addressed. It is revealed that the sixth‐order and eighth‐order CCFDMs and SCFDMs lead to a remarkable improvement of the solution over the fourth‐order compact method. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

8.
9.
Robust computational procedures for the solution of non‐hydrostatic, free surface, irrotational and inviscid free‐surface water waves in three space dimensions can be based on iterative preconditioned defect correction (PDC) methods. Such methods can be made efficient and scalable to enable prediction of free‐surface wave transformation and accurate wave kinematics in both deep and shallow waters in large marine areas or for predicting the outcome of experiments in large numerical wave tanks. We revisit the classical governing equations are fully nonlinear and dispersive potential flow equations. We present new detailed fundamental analysis using finite‐amplitude wave solutions for iterative solvers. We demonstrate that the PDC method in combination with a high‐order discretization method enables efficient and scalable solution of the linear system of equations arising in potential flow models. Our study is particularly relevant for fast and efficient simulation of non‐breaking fully nonlinear water waves over varying bottom topography that may be limited by computational resources or requirements. To gain insight into algorithmic properties and proper choices of discretization parameters for different PDC strategies, we study systematically limits of accuracy, convergence rate, algorithmic and numerical efficiency and scalability of the most efficient known PDC methods. These strategies are of interest, because they enable generalization of geometric multigrid methods to high‐order accurate discretizations and enable significant improvement in numerical efficiency while incuring minimal storage requirements. We demonstrate robustness using such PDC methods for practical ranges of interest for coastal and maritime engineering, that is, from shallow to deep water, and report details of numerical experiments that can be used for benchmarking purposes. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

10.
Solving efficiently the incompressible Navier–Stokes equations is a major challenge, especially in the three‐dimensional case. The approach investigated by Elman et al. (Finite Elements and Fast Iterative Solvers. Oxford University Press: Oxford, 2005) consists in applying a preconditioned GMRES method to the linearized problem at each iteration of a nonlinear scheme. The preconditioner is built as an approximation of an ideal block‐preconditioner that guarantees convergence in 2 or 3 iterations. In this paper, we investigate the numerical behavior for the three‐dimensional lid‐driven cavity problem with wedge elements; the ultimate motivation of this analysis is indeed the development of a preconditioned Krylov solver for stratified oceanic flows which can be efficiently tackled using such meshes. Numerical results for steady‐state solutions of both the Stokes and the Navier–Stokes problems are presented. Theoretical bounds on the spectrum and the rate of convergence appear to be in agreement with the numerical experiments. Sensitivity analysis on different aspects of the structure of the preconditioner and the block decomposition strategies are also discussed. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
A higher order compact (HOC) finite difference solution procedure has been proposed for the steady two‐dimensional (2D) convection–diffusion equation on non‐uniform orthogonal Cartesian grids involving no transformation from the physical space to the computational space. Effectiveness of the method is seen from the fact that for the first time, an HOC algorithm on non‐uniform grid has been extended to the Navier–Stokes (N–S) equations. Apart from avoiding usual computational complexities associated with conventional transformation techniques, the method produces very accurate solutions for difficult test cases. Besides including the good features of ordinary HOC schemes, the method has the advantage of better scale resolution with smaller number of grid points, with resultant saving of memory and CPU time. Gain in time however may not be proportional to the decrease in the number of grid points as grid non‐uniformity imparts asymmetry to some of the associated matrices which otherwise would have been symmetric. The solution procedure is also highly robust as it computes complex flows such as that in the lid‐driven square cavity at high Reynolds numbers (Re), for which no HOC results have so far been seen. Copyright © 2004 John Wiley & Sons, Ltd.  相似文献   

12.
Evolutionary algorithms mimic the process of natural evolution governed by the ‘survival of the fittest’ principle. In this work, a genetic algorithm (GA) is successfully used to solve problems in potential flow in a gradual contraction, viscous flow over a backward facing step, and non‐Newtonian flow using the power law model. Specifically, the GA heuristically searches the domain for potential solutions, precluding many convergence difficulties associated with the stiffness of a problem. The GA was able to solve problems that the gradient‐based method could not mainly because of its relative indifference to regions of high gradients when performing the search and that systems of discretized equations are never actually solved. The GA exhibited excellent scalability properties for solving problems with a large number of nodes. These results show evolutionary techniques to be of great utility in solving stiff problems in fluid flow. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

13.
In the present investigation, a Fourier analysis is used to study the phase and group speeds of a linearized, two‐dimensional shallow water equations, in a non‐orthogonal boundary‐fitted co‐ordinate system. The phase and group speeds for the spatially discretized equations, using the second‐order scheme in an Arakawa C grid, are calculated for grids with varying degrees of non‐orthogonality and compared with those obtained from the continuous case. The spatially discrete system is seen to be slightly dispersive, with the degree of dispersivity increasing with an decrease in the grid non‐orthogonality angle or decrease in grid resolution and this is in agreement with the conclusions reached by Sankaranarayanan and Spaulding (J. Comput. Phys., 2003; 184 : 299–320). The stability condition for the non‐orthogonal case is satisfied even when the grid non‐orthogonality angle, is as low as 30° for the Crank Nicolson and three‐time level schemes. A two‐dimensional wave deformation analysis, based on complex propagation factor developed by Leendertse (Report RM‐5294‐PR, The Rand Corp., Santa Monica, CA, 1967), is used to estimate the amplitude and phase errors of the two‐time level Crank–Nicolson scheme. There is no dissipation in the amplitude of the solution. However, the phase error is found to increase, as the grid angle decreases for a constant Courant number, and increases as Courant number increases. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

14.
We prove convergence of the finite element method for the Navier–Stokes equations in which the no‐slip condition and no‐penetration condition on the flow boundary are imposed via a penalty method. This approach has been previously studied for the Stokes problem by Liakos (Weak imposition of boundary conditions in the Stokes problem. Ph.D. Thesis, University of Pittsburgh, 1999). Since, in most realistic applications, inertial effects dominate, it is crucial to extend the validity of the method to the nonlinear Navier–Stokes case. This report includes the analysis of this extension, as well as numerical results validating their analytical counterparts. Specifically, we show that optimal order of convergence can be achieved if the computational boundary follows the real flow boundary exactly. Copyright © 2008 John Wiley & Sons, Ltd.  相似文献   

15.
Non‐linear turbulence models can be seen as an improvement of the classical eddy‐viscosity concept due to their better capacity to simulate characteristics of important flows. However, application of non‐linear models demand robustness of the numerical method applied, requiring a stable discretization scheme for convergence of all variables involved. Usually, non‐linear terms are handled in an explicit manner leading to possible numerical instabilities. Thus, the present work shows the steps taken to adapt a general non‐linear constitutive equation using a new semi‐implicit numerical treatment for the non‐linear diffusion terms. The objective is to increase the degree of implicitness of the solution algorithm to enhance convergence characteristics. Flow over a backward‐facing step was computed using the control volume method applied to a boundary‐fitted coordinate system. The SIMPLE algorithm was used to relax the algebraic equations. Classical wall function and a low Reynolds number model were employed to describe the flow near the wall. The results showed that for certain combination of relaxation parameters, the semi‐implicit treatment proposed here was the sole successful treatment in order to achieve solution convergence. Also, application of the implicit method described here shows that the stability of the solution either increases (high Reynolds with non‐orthogonal mesh) or preserves the same (low Reynolds number applications). Additional advantages of the procedure proposed here lie in the possibility of testing different non‐linear expressions if one considers the enhanced robustness and stability obtained for the entire numerical algorithm. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

16.
In this paper, we propose a new methodology for numerically solving elliptic and parabolic equations with discontinuous coefficients and singular source terms. This new scheme is obtained by clubbing a recently developed higher‐order compact methodology with special interface treatment for the points just next to the points of discontinuity. The overall order of accuracy of the scheme is at least second. We first formulate the scheme for one‐dimensional (1D) problems, and then extend it directly to two‐dimensional (2D) problems in polar coordinates. In the process, we also perform convergence and related analysis for both the cases. Finally, we show a new direction of implementing the methodology to 2D problems in cartesian coordinates. We then conduct numerous numerical studies on a number of problems, both for 1D and 2D cases, including the flow past circular cylinder governed by the incompressible Navier–Stokes equations. We compare our results with existing numerical and experimental results. In all the cases, our formulation is found to produce better results on coarser grids. For the circular cylinder problem, the scheme used is seen to capture all the flow characteristics including the famous von Kármán vortex street. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
An alternative discretization of pressure‐correction equations within pressure‐correction schemes for the solution of the incompressible Navier–Stokes equations is introduced, which improves the convergence and robustness properties of such schemes for non‐orthogonal grids. As against standard approaches, where the non‐orthogonal terms usually are just neglected, the approach allows for a simplification of the pressure‐correction equation to correspond to 5‐point or 7‐point computational molecules in two or three dimensions, respectively, but still incorporates the effects of non‐orthogonality. As a result a wide range (including rather high values) of underrelaxation factors can be used, resulting in an increased overall performance of the underlying pressure‐correction schemes. Within this context, a second issue of the paper is the investigation of the accuracy to which the pressure‐correction equation should be solved in each pressure‐correction iteration. The scheme is investigated for standard test cases and, in order to show its applicability to practical flow problems, for a more complex configuration of a micro heat exchanger. Copyright © 2003 John Wiley & Sons, Ltd.  相似文献   

18.
微可压缩模型(slightly compressible model,SCM)是求解低马赫数流动的一种有效模型, SCM在求解过程中不必满足速度散度为零的条件,可直接应用时间推进方法求解得到不可压缩N-S方程的解. 深入研究了该模型的效率和精度; 为了提高收敛速度将预处理技术引入到该模型中, 推导了预处理后的控制方程和特征系统, 并构造了预处理后的通量. 通过对圆柱绕流、方腔流动、NACA0012翼型和6:1椭球的数值模拟, 一方面, 进一步展示了SCM的可行性与健壮性, 表明SCM适合于低马赫流动的数值模拟; 另一方面, 充分验证了预处理技术在微可压缩模型中的作用, 一定程度上解决了低马赫数流动的收敛问题, 并提高了求解的准确性和精度. 这为SCM应用于工程实际创造了一定的条件.   相似文献   

19.
The pseudo‐time formulation of Jameson has facilitated the use of numerical methods for unsteady flows, these methods have proved successful for steady flows. The formulation uses iterations through pseudo‐time to arrive at the next real time approximation. This iteration can be used in a straightforward manner to remove sequencing errors introduced when solving mean flow equations together with another set of differential equations (e.g. two‐equation turbulence models or structural equations). The current paper discusses the accuracy and efficiency advantages of removing the sequencing error and the effect that building extra equations into the pseudo‐time iteration has on its convergence characteristics. Test cases used are for the turbulent flow around pitching and ramping aerofoils. The performance of an implicit method for solving the pseudo‐steady state problem is also assessed. Copyright © 2000 John Wiley & Sons, Ltd.  相似文献   

20.
This paper reports on a numerical algorithm for the steady flow of viscoelastic fluid. The conservative and constitutive equations are solved using the finite volume method (FVM) with a hybrid scheme for the velocities and first‐order upwind approximation for the viscoelastic stress. A non‐uniform staggered grid system is used. The iterative SIMPLE algorithm is employed to relax the coupled momentum and continuity equations. The non‐linear algebraic equations over the flow domain are solved iteratively by the symmetrical coupled Gauss–Seidel (SCGS) method. In both, the full approximation storage (FAS) multigrid algorithm is used. An Oldroyd‐B fluid model was selected for the calculation. Results are reported for planar 4:1 abrupt contraction at various Weissenberg numbers. The solutions are found to be stable and smooth. The solutions show that at high Weissenberg number the domain must be long enough. The convergence of the method has been verified with grid refinement. All the calculations have been performed on a PC equipped with a Pentium III processor at 550 MHz. Copyright © 2001 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号