首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
A graph G is said to be Pt‐free if it does not contain an induced path on t vertices. The i‐center Ci(G) of a connected graph G is the set of vertices whose distance from any vertex in G is at most i. Denote by I(t) the set of natural numbers i, ⌊t/2⌋ ≤ it − 2, with the property that, in every connected Pt‐free graph G, the i‐center Ci(G) of G induces a connected subgraph of G. In this article, the sharp upper bound on the diameter of G[Ci(G)] is established for every iI(t). The sharp lower bound on I(t) is obtained consequently. © 1999 John Wiley & Sons, Inc. J Graph Theory 30: 235–241, 1999  相似文献   

2.
A set S of vertices in a graph G is a total dominating set of G if every vertex of G is adjacent to some vertex in S. The minimum cardinality of a total dominating set of G is the total domination number γt(G) of G. It is known [J Graph Theory 35 (2000), 21–45] that if G is a connected graph of order n > 10 with minimum degree at least 2, then γt(G) ≤ 4n/7 and the (infinite family of) graphs of large order that achieve equality in this bound are characterized. In this article, we improve this upper bound of 4n/7 for 2‐connected graphs, as well as for connected graphs with no induced 6‐cycle. We prove that if G is a 2‐connected graph of order n > 18, then γt(G) ≤ 6n/11. Our proof is an interplay between graph theory and transversals in hypergraphs. We also prove that if G is a connected graph of order n > 18 with minimum degree at least 2 and no induced 6‐cycle, then γt(G) ≤ 6n/11. Both bounds are shown to be sharp. © 2008 Wiley Periodicals, Inc. J Graph Theory 60: 55–79, 2009  相似文献   

3.
Let G be a connected graph and let eb(G) and λ(G) denote the number of end‐blocks and the maximum number of disjoint 3‐vertex paths Λ in G. We prove the following theorems on claw‐free graphs: (t1) if G is claw‐free and eb(G) ≤ 2 (and in particular, G is 2‐connected) then λ(G) = ⌊| V(G)|/3⌋; (t2) if G is claw‐free and eb(G) ≥ 2 then λ(G) ≥ ⌊(| V(G) | − eb(G) + 2)/3 ⌋; and (t3) if G is claw‐free and Δ*‐free then λ(G) = ⌊| V(G) |/3⌋ (here Δ* is a graph obtained from a triangle Δ by attaching to each vertex a new dangling edge). We also give the following sufficient condition for a graph to have a Λ‐factor: Let n and p be integers, 1 ≤ pn − 2, G a 2‐connected graph, and |V(G)| = 3n. Suppose that GS has a Λ‐factor for every SV(G) such that |S| = 3p and both V(G) − S and S induce connected subgraphs in G. Then G has a Λ‐factor. © 2001 John Wiley & Sons, Inc. J Graph Theory 36: 175–197, 2001  相似文献   

4.
Let G be a graph and let V0 = {ν∈ V(G): dG(ν) = 6}. We show in this paper that: (i) if G is a 6‐connected line graph and if |V0| ≤ 29 or G[V0] contains at most 5 vertex disjoint K4's, then G is Hamilton‐connected; (ii) every 8‐connected claw‐free graph is Hamilton‐connected. Several related results known before are generalized. © 2005 Wiley Periodicals, Inc. J Graph Theory  相似文献   

5.
Let G be a graph. For each vertex vV(G), Nv denotes the subgraph induces by the vertices adjacent to v in G. The graph G is locally k‐edge‐connected if for each vertex vV(G), Nv is k‐edge‐connected. In this paper we study the existence of nowhere‐zero 3‐flows in locally k‐edge‐connected graphs. In particular, we show that every 2‐edge‐connected, locally 3‐edge‐connected graph admits a nowhere‐zero 3‐flow. This result is best possible in the sense that there exists an infinite family of 2‐edge‐connected, locally 2‐edge‐connected graphs each of which does not have a 3‐NZF. © 2003 Wiley Periodicals, Inc. J Graph Theory 42: 211–219, 2003  相似文献   

6.
A graph G is 1‐Hamilton‐connected if G?x is Hamilton‐connected for every xV(G), and G is 2‐edge‐Hamilton‐connected if the graph G+ X has a hamiltonian cycle containing all edges of X for any X?E+(G) = {xy| x, yV(G)} with 1≤|X|≤2. We prove that Thomassen's conjecture (every 4‐connected line graph is hamiltonian, or, equivalently, every snark has a dominating cycle) is equivalent to the statements that every 4‐connected line graph is 1‐Hamilton‐connected and/or 2‐edge‐Hamilton‐connected. As a corollary, we obtain that Thomassen's conjecture implies polynomiality of both 1‐Hamilton‐connectedness and 2‐edge‐Hamilton‐connectedness in line graphs. Consequently, proving that 1‐Hamilton‐connectedness is NP‐complete in line graphs would disprove Thomassen's conjecture, unless P = NP. © 2011 Wiley Periodicals, Inc. J Graph Theory 69: 241–250, 2012  相似文献   

7.
Let i be a positive integer. We generalize the chromatic number X(G) of G and the clique number o(G) of G as follows: The i-chromatic number of G, denoted by X(G), is the least number k for which G has a vertex partition V1, V2,…, Vk such that the clique number of the subgraph induced by each Vj, 1 ≤ jk, is at most i. The i-clique number, denoted by oi(G), is the i-chromatic number of a largest clique in G, which equals [o(G/i]. Clearly X1(G) = X(G) and o1(G) = o(G). An induced subgraph G′ of G is an i-transversal iff o(G′) = i and o(GG′) = o(G) − i. We generalize the notion of perfect graphs as follows: (1) A graph G is i-perfect iff Xi(H) = oi(H) for every induced subgraph H of G. (2) A graph G is perfectly i-transversable iff either o(G) ≤ i or every induced subgraph H of G with o(H) > i contains an i-transversal of H. We study the relationships among i-perfect graphs and perfectly i-transversable graphs. In particular, we show that 1-perfect graphs and perfectly 1-transversable graphs both coincide with perfect graphs, and that perfectly i-transversable graphs form a strict subset of i-perfect graphs for every i ≥ 2. We also show that all planar graphs are i-perfect for every i ≥ 2 and perfectly i-transversable for every i ≥ 3; the latter implies a new proof that planar graphs satisfy the strong perfect graph conjecture. We prove that line graphs of all triangle-free graphs are 2-perfect. Furthermore, we prove for each i greater than or equal to2, that the recognition of i-perfect graphs and the recognition of perfectly i-transversable graphs are intractable and not likely to be in co-NP. We also discuss several issues related to the strong perfect graph conjecture. © 1996 John Wiley & Sons, Inc.  相似文献   

8.
In the set of graphs of order n and chromatic number k the following partial order relation is defined. One says that a graph G is less than a graph H if ci(G) ≤ ci(H) holds for every i, kin and at least one inequality is strict, where ci(G) denotes the number of i‐color partitions of G. In this paper the first ? n/2 ? levels of the diagram of the partially ordered set of connected 3‐chromatic graphs of order n are described. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 210–222, 2003  相似文献   

9.
Let G be a 3‐connected simple graph of minimum degree 4 on at least six vertices. The author proves the existence of an even cycle C in G such that G‐V(C) is connected and G‐E(C) is 2‐connected. The result is related to previous results of Jackson, and Thomassen and Toft. Thomassen and Toft proved that G contains an induced cycle C such that both G‐V(C) and G‐E(C) is 2‐connected. G does not in general contain an even cycle such that G‐V(C) is 2‐connected. © 2004 Wiley Periodicals, Inc. J Graph Theory 45: 163–223, 2004  相似文献   

10.
Let G be a 2‐connected graph, let u and v be distinct vertices in V(G), and let X be a set of at most four vertices lying on a common (u, v)‐path in G. If deg(x) ≥ d for all xV(G) \ {u, v}, then there is a (u, v)‐path P in G with XV(P) and |E(P)| ≥ d. © 2000 John Wiley & Sons, Inc. J Graph Theory 33: 55–65, 2000  相似文献   

11.
A graph G is bridged if every cycle C of length at least 4 has vertices x,y such that dG(x,y) < dC(x,y). A cycle C is isometric if dG(x,y) = dC(x,y) for all x,yV(C). We show that every graph contractible to a graph with girth g has an isometric cycle of length at least g. We use this to show that every minimal cutset S in a bridged graph G induces a connected subgraph. We introduce a “crowning” construction to enlarge bridged graphs. We use this to construct examples showing that for every connected simple graph H with girth at least 6 (including trees), there exists a bridged graph G such that G has a unique minimum cutset S and that G[S] = H. This provides counterexamples to Hahn's conjecture that dG(u,v) ≤ 2 when u and v lie in a minimum cutset in a bridged graph G. We also study the convexity of cutsets in bridged graphs. © 2003 Wiley Periodicals, Inc. J Graph Theory 43: 161–170, 2003  相似文献   

12.
 Let G be a connected graph without loops and without multiple edges, and let p be an integer such that 0 < p<|V(G)|. Let f be an integer-valued function on V(G) such that 2≤f(x)≤ deg G (x) for all xV(G). We show that if every connected induced subgraph of order p of G has an f-factor, then G has an f-factor, unless ∑ x V ( G ) f(x) is odd. Received: June 29, 1998?Final version received: July 30, 1999  相似文献   

13.
Let G be a graph and p ϵ (0, 1). Let A(G, p) denote the probability that if each edge of G is selected at random with probability p then the resulting spanning subgraph of G is connected. Then A(G, p) is a polynomial in p. We prove that for every integer k ≥ 1 and every k‐tuple (m1, m2, … ,mk) of positive integers there exist infinitely many pairs of graphs G1 and G2 of the same size such that the polynomial A(G1, p) − A(G2, p) has exactly k roots x1 < x2 < ··· < xk in (0, 1) such that the multiplicity of xi is mi. We also prove the same result for the two‐terminal reliability polynomial, defined as the probability that the random subgraph as above includes a path connecting two specified vertices. These results are based on so‐called A‐ and T‐multiplying constructions that are interesting in themselves. © 2000 John Wiley & Sons, Inc. J Graph Theory 35: 206–221, 2000  相似文献   

14.
Under what conditions is it true that if there is a graph homomorphism GHGT, then there is a graph homomorphism HT? Let G be a connected graph of odd girth 2k + 1. We say that G is (2k + 1)‐angulated if every two vertices of G are joined by a path each of whose edges lies on some (2k + 1)‐cycle. We call G strongly (2k + 1)‐angulated if every two vertices are connected by a sequence of (2k + 1)‐cycles with consecutive cycles sharing at least one edge. We prove that if G is strongly (2k + 1)‐angulated, H is any graph, S, T are graphs with odd girth at least 2k + 1, and ?: GHST is a graph homomorphism, then either ? maps G□{h} to S□{th} for all hV(H) where thV(T) depends on h; or ? maps G□{h} to {sh}□ T for all hV(H) where shV(S) depends on h. This theorem allows us to prove several sufficient conditions for a cancelation law of a graph homomorphism between two box products with a common factor. We conclude the article with some open questions. © 2008 Wiley Periodicals, Inc. J Graph Theory 58:221‐238, 2008  相似文献   

15.
A result of G. Chartrand, A. Kaugars, and D. R. Lick [Proc Amer Math Soc 32 (1972), 63–68] says that every finite, k‐connected graph G of minimum degree at least ?3k/2? contains a vertex x such that G?x is still k‐connected. We generalize this result by proving that every finite, k‐connected graph G of minimum degree at least ?3k/2?+m?1 for a positive integer m contains a path P of length m?1 such that G?V(P) is still k‐connected. This has been conjectured in a weaker form by S. Fujita and K. Kawarabayashi [J Combin Theory Ser B 98 (2008), 805–811]. © 2009 Wiley Periodicals, Inc. J Graph Theory 65: 61–69, 2010.  相似文献   

16.
A graph G = (V, E) is called weakly four‐connected if G is 4‐edge‐connected and G ? x is 2‐edge‐connected for all xV. We give sufficient conditions for the existence of ‘splittable’ vertices of degree four in weakly four‐connected graphs. By using these results we prove that every minimally weakly four‐connected graph on at least four vertices contains at least three ‘splittable’ vertices of degree four, which gives rise to an inductive construction of weakly four‐connected graphs. Our results can also be applied in the problem of finding 2‐connected orientations of graphs. © 2006 Wiley Periodicals, Inc. J Graph Theory 52: 217–229, 2006  相似文献   

17.
A ray of a graph G is isometric if every path in R is a shortest path in G. A vertex x of G geodesically dominates a subset A of V(G) if, for every finite SV(Gx), there exists an element a of A − {x} such that the interval (set of vertices of all shortest paths) between x and a is disjoint from S. A set AV(G) is geodesically closed if it contains all vertices which geodesically dominate A. These geodesically closed sets define a topology, called the geodesic topology, on V(G). We prove that a connected graph G has no isometric rays if and only if the set V(G) endowed with the geodesic topology is compact, or equivalently if and only if the vertex set of every ray in G is geodesically dominated. We prove different invariant subgraph properties for graphs containing no isometric rays. In particular we show that every self-contraction (map which preserves or contracts the edges) of a chordal graph G stabilizes a non-empty finite simplex (complete graph) if and only if G is connected and contains no isometric rays and no infinite simplices. © 1998 John Wiley & Sons, Inc. J Graph Theory 27: 99–109, 1998  相似文献   

18.
Let G be a planar graph and let g(G) and Δ(G) be its girth and maximum degree, respectively. We show that G has an edge‐partition into a forest and a subgraph H so that (i) Δ(H) ≤ 4 if g(G) ≥ 5; (ii) Δ(H) ≤ 2 if g(G) ≥ 7; (iii) Δ(H)≤ 1 if g(G) ≥ 11; (iv) Δ(H) ≤ 7 if G does not contain 4‐cycles (though it may contain 3‐cycles). These results are applied to find the following upper bounds for the game coloring number colg(G) of a planar graph G: (i) colg(G) ≤ 8 if g(G) ≥ 5; (ii) colg(G)≤ 6 if g(G) ≥ 7; (iii) colg(G) ≤ 5 if g(G) ≥ 11; (iv) colg(G) ≤ 11 if G does not contain 4‐cycles (though it may contain 3‐cycles). © 2002 Wiley Periodicals, Inc. J Graph Theory 41: 307–317, 2002  相似文献   

19.
The square G2 of a graph G is the graph with the same vertex set G and with two vertices adjacent if their distance in G is at most 2. Thomassen showed that every planar graph G with maximum degree Δ(G) = 3 satisfies χ(G2) ≤ 7. Kostochka and Woodall conjectured that for every graph, the list‐chromatic number of G2 equals the chromatic number of G2, that is, χl(G2) = χ(G2) for all G. If true, this conjecture (together with Thomassen's result) implies that every planar graph G with Δ(G) = 3 satisfies χl(G2) ≤ 7. We prove that every connected graph (not necessarily planar) with Δ(G) = 3 other than the Petersen graph satisfies χl(G2) ≤8 (and this is best possible). In addition, we show that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 7, then χl(G2) ≤ 7. Dvo?ák, ?krekovski, and Tancer showed that if G is a planar graph with Δ(G) = 3 and girth g(G) ≥ 10, then χl(G2) ≤6. We improve the girth bound to show that if G is a planar graph with Δ(G) = 3 and g(G) ≥ 9, then χl(G2) ≤ 6. All of our proofs can be easily translated into linear‐time coloring algorithms. © 2007 Wiley Periodicals, Inc. J Graph Theory 57: 65–87, 2008  相似文献   

20.
A graph H is a cover of a graph G, if there exists a mapping φ from V(H) onto V(G) such that for every vertex υ of G, φ maps the neighbors of υ in H bijectively onto the neighbors of φ(υ) in G. Negami conjectured in 1987 that a connected graph has a finite planar cover if and only if it embeds in the projective plane. This conjecture is not completely solved yet, but partial results due to Archdeacon, Fellows, Negami, and the author are known. This article suggests another formulation of this conjecture that has a straightforward generalization to higher nonorientable surfaces, and provides some support for the generalized version. © 1999 John Wiley & Sons, Inc. J Graph Theory 32: 234–240 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号