首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Two counter-propagating evanescent beams are used to align and manipulate polystyrene particles on a prism surface. Since the radiation pressure transferred laterally from the evanescent wave is negated on both sides, particles can be stably aligned. By projecting a circular and a linear beam spot onto the interface, both multiple and single arrays of particles are achieved. Arrays of particles trapped on the interface can be easily moved adjusting the intensity of incident beams on either side. We also simulate electromagnetic distribution of scattering light that is converted from the evanescent wave using the FDTD method. The results show that scattering light converts from an evanescent wave propagating through a particle array and has a distance longer than that propagating from a normal evanescent wave.  相似文献   

3.
A basic formula for the coefficient of energy emission from an evanescent electromagnetic wave at scattering by a dielectric structure is derived. The derived formula is interpreted in terms of interference of an incident evanescent wave with its reflection by the structure and applied to evanescent wave scattering by a 3D random medium.  相似文献   

4.
A detailed study on the lateral displacements of a transverse magnetic (TM) wave transmitted and reflected from a symmetric gyrotropic slab is presented. We give the analytic formulas for the transmission coefficient and the reflection coefficient, as well as the corresponding lateral displacements. It is found that due to the external magnetic field the displacement of a transmitted beam is different from that of reflected one, even for a lossless symmetric configuration. Furthermore, within the chosen frequency band, when the incident angle is near the Brewster angle, the shift of a reflected wave can be large with nonzero reflectance, and can be positive or negative depending on the direction of the applied magnetic field and the incident wave.  相似文献   

5.
External anisotropic feedback effects on the phase difference behaviour of output intensities in a microchip Nd:YAG laser are presented. By rotating a quarter wave plate placed in the external cavity, the angle between laser initial polarization direction and o-axis of the wave plate is tuned from -45°to 45°, which results in variable extra-cavity birefringence along two orthogonal detection directions. With only one optical path and one wave plate, laser intensities of the two orthogonal directions, both modulated by the external cavity length, are output with a tunable phase difference, which can be continuously changed from zero to twice as large as that of the waveplate. Experimental results as well as a theoretical analysis based on Fabry-Perot cavity equivalent model and the refractive index ellipsoid, are presented. The potential applications of this phenomenon are also discussed.  相似文献   

6.
We present analysis of the interacting quantum wire problem in the presence of magnetic field and spin-orbit interaction. We show that an interesting interplay of Zeeman and spin-orbit terms, facilitated by the electron-electron interaction, results in the spin-density wave state when the magnetic field and spin-orbit axes are orthogonal. This strongly affects charge transport through the wire: With the spin-density wave stabilized, single-particle backscattering off a nonmagnetic impurity becomes irrelevant. The sensitivity of the effect to the direction of the magnetic field can be used for experimental verification of this proposal.  相似文献   

7.
We report analytical calculations for the propagation of electromagnetic radiation through an inhomogeneous layer whose refractive index varies in one-dimension situated between bulk right- and left-handed media. Significant field localization is generated in the layer that is caused by the coherent superposition of evanescent waves. The strength of the field localization and the transmission properties of the layer are investigated as a function of the layer width, losses and defects in the refractive index; the former two being modelled by continuous changes, and the latter by discontinuous changes, in the index profile.  相似文献   

8.
The impact of a dc magnetic field on evanescent TE and TM waves at the interface of transparent media comprising a semiconductor layer and a semi-infinite antiferromagnet is investigated using Otto geometry as an example. It is shown that switching a dc magnetic field orthogonal to a sagittal plane allows maximum amplification of the intensity of propagating evanescent TM or TE waves in both a layer and in semi-infinite space. The optimum conditions correspond to the formation of a peculiar TM or TE surface wave.  相似文献   

9.
Lian-huang Li  Fu-yuan Guo 《Optik》2012,123(23):2136-2139
Beam parameters, including mode-field radius, divergence half-angle and beam propagation factor are studied and relations among them are derived under the condition of paraxial approximation. Several formulas of the beam parameters for end diffraction-limited from the fundamental mode of fiber are given based on the normalized standing wave parameter, normalized evanescent wave parameter and radii of core layer and circular aperture. Moreover, influence of change of the near-field on beam parameters is researched and the results show that the cladding layer field has determinant effect and cannot be neglect. These conclusions may provide theoretical foundation for further researching the beam parameters.  相似文献   

10.
The self-consistent problem is solved for the interaction of two dipole atoms situated at arbitrary distance from one another with the field of quasiresonant light wave. Atoms are considered to be linear Lorenz oscillators. Polarizing fields inside the system include both Coulomb and retarding parts. The solutions obtained are investigated for the case when atoms have the same polarizabilities and interatomic distance is much less than external light wavelength. Formulas for electric fields inside and outside of small object are obtained. It is shown that longitudinal and transverse optical oscillations are possible to exist inside small two-atom object. Dispersion laws of these oscillations depend upon interatomic distance and upon angle between axis of the system and the direction of propagation of external wave. The field outside the small object in wave zone is linearly polarized with the choice of linear polarization of external field. However, the directions of polarization of these waves are different and depend essentially upon frequency. The amplitude of field outside small object in wave zone is shown to depend essentially on the frequency of external field and interatomic distance. The results obtained are treated as near-field effect in the optics of small objects making it possible to investigate the structure of small objects with optical radiation. Received 26 October 1998 and Received in final form 26 January 2000  相似文献   

11.
We investigate the possibility of charge carrier localization in magnetic semiconductors due to the presence of a highly inhomogeneous external magnetic field. As an example, we study in detail the properties of a magnetic semiconductor-permalloy disk hybrid system. We find that the giant Zeeman response of the magnetic semiconductor in conjunction with the highly nonuniform magnetic field created by the vortex state of a permalloy disk can lead to Zeeman localized states at the interface of the two materials. These trapped states are chiral, with chirality controlled by the orientation of the core magnetization of the permalloy disk. We calculate the energy spectrum and the eigenstates of these Zeeman localized states, and discuss their experimental signatures in spectroscopic probes.  相似文献   

12.
Single-mode backward wave is shown to be guided in a planar dielectric waveguide with a strong chiral core. The significant difference of such a waveguide from the traditional one is the guidance of single-mode backward wave, without using negative permittivity and/or negative permeability. In the design, we generalize the idea of total internal reflection to the chiral medium and make a numerical analysis on the reflection with oblique incidence. We deduce rigorously a general solution of incident wave on the boundary of two arbitrary chiral magneto-electric media. We observe that the impedance matching can eliminate the coupling between two eigenwaves in chiral media. With strong chiral core and the matched impedance with cladding, one eigenwave becomes a backward wave and can be guided without transferring to the other eigenwave. If a single-mode propagation condition is satisfied, we will get single-mode backward guided wave. A special interface has been designed to prevent the forward wave entering the waveguide from the source.  相似文献   

13.
The effects of Rashba spin-orbit coupling on the physical properties of a non-interacting two-dimensional electron gas (2DEG) in presence of a tilted magnetic field are investigated. The spin-orbit and Zeeman interactions depend on the intensity and direction of the external magnetic field and we study their influence on the physical properties of the system. We obtain the energy spectrum, the density of states, the Fermi energy, and we analyze the combined effect of the Zeeman and Rashba Spin-Orbit Interaction on the transport and thermodynamic properties.  相似文献   

14.
We compute the reflected and refracted electromagnetic fields for an ideal semi-infinite (half-space) plasma, as well as the reflection coefficient, by using a general procedure based on equations of motion and electromagnetic potentials. The approach consists of representing the charge disturbances by a displacement field in the positions of the moving particles (electrons). The propagation of an electromagnetic wave in plasma is treated by means of the retarded electromagnetic potentials, and the resulting integral equations are solved. Generalized Fresnel’s relations are thereby obtained for any incidence angle and polarization and the angles of total polarization and total reflection are derived. Bulk and surface plasmon-polariton modes are identified. As it is well known, the field inside the plasma is either damped (evanescent) or propagating (transparency regime), and the reflection coefficient exhibits an abrupt enhancement on passing from the propagating regime to the damped one (total reflection).  相似文献   

15.
The polarization of a D-shaped fiber is modulated after immersing it in magnetic fluid(MF)and applying a magnetic field.Theoretical analysis predicts that magneto-optical dichroism of MF plays a key role in light polarization modulation.During light polarization modulation,the evanescent wave polarized parallel to the magnetic field has greater loss than its orthogonal component.Light polarization of a D-shaped fiber with a wide polished surface can be modulated easily.High concentration MF and a large magnetic field all have great ability to modulate light polarization.  相似文献   

16.
A simple circuit has been designed to generate a bi-symmetric square wave Zeeman modulation for the detection of nuclear quadrupole resonance. The square waveform not only provides an optimum result among bi-symmetric modulation waveforms, but also allows the observation of the Zeeman perturbed NQR powder pattern without the need for an extra external magnetic field.  相似文献   

17.
We propose a mechanism by which an open quantum dot driven by two ac (radio frequency) gate voltages in the presence of a moderate in-plane magnetic field generates a spin-polarized, phase-coherent dc current. The idea combines adiabatic, nonquantized (but coherent) pumping through periodically modulated external parameters and the strong fluctuations of the electron wave function existent in chaotic cavities. We estimate that the spin polarization of the current can be observed for temperatures and Zeeman splitting energies of the order of the single-particle mean level spacing.  相似文献   

18.
The effect a constant external magnetic field has on the magnitude and direction of an energy flux carried by evanescent TM or TE wave in a two-component one-dimensional magnetic photonic crystal of the centroantisymmetric antiferromagnetic type (a nonmagnetic insulator) is investigated.  相似文献   

19.
We review recent theoretical models and experiments dealing with the diffraction of neutral atoms by a reflection grating, formed by a standing evanescent wave. We analyze diffraction mechanisms proposed for normal and grazing incidence, point out their scopes and confront the theory with experiment. Received: 12 June 1999 / Published online: 8 September 1999  相似文献   

20.
An extremely thin cell (ETC) with the thickness of a Rb atomic vapor layer in the range of 100–300 nm was fabricated. It is demonstrated that a simple laser-diode technique with a single resonant light beam is sufficient to observe separately all of the atomic hyperfine transitions of the D 2 line of Rb (780 nm) and also allows us to measure the relative transition probabilities of the hyperfine transitions. The onset of collisional self-broadening of the hyperfine transitions as the number density of atoms increases was studied. The detrimental role of the atoms with slow longitudinal velocity in the sub-Doppler response of the Rb ETC is demonstrated by studies in which the cell is tilted from normal incidence of the laser beam. It is also shown that using an ETC allows us to resolve in a moderate external magnetic field the Zeeman splitting of the hyperfine transitions of the 87Rb D 1 transition F g=1F e=1,2. Received: 19 February 2003 / Revised version: 4 April 2003 / Published online: 2 June 2003 RID="*" ID="*"Corresponding author. Fax: +374/32-31172, E-mail: david@ipr.sci.am  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号