首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 909 毫秒
1.
We present first measurements on the resonance enhanced three-photon excitation in thallium, using a Nd:YAG laser pumped dye laser in conjunction with a thermionic diode ion detector. The even-parity 6s2ns2S1/2 (15 ? n ? 31) and nd 2D5/2 (13 ? n ? 42) Rydberg states have been observed. The measured level energies reveal a dynamic shift from the photoabsorption values, which is decreasing with increasing n, while the asymmetry in the line profile is observed to be increasing with increasing n. In addition, an autoionising level (sp24P3/2) adjacent to the ionization threshold has been observed and quantitatively analyzed using the Fano’s photoionization cross-section relation for an isolated autoionising resonance.  相似文献   

2.
We report experimental data on the highly excited states of zinc in the energy range 74,625-75,740 cm−1 using two-step laser excitation scheme in conjunction with a thermionic diode ion detector. The 4s4p 3P1 inter-combination level at 32501.399 cm−1 was populated using a frequency doubled dye laser. The 4s5s 3S1 level at 53672.28 cm−1 gets populated from the ASE (amplified spontaneous emission) of the second step dye laser. The Rydberg series 4snp 3P2 (12 ? n ? 60), 4snp 1P1 (16 ? n ? 30) and parity forbidden transitions 4sns 3S1 (19 ? n ? 44) have been observed. A two parameter fit to excitation energies of the observed series yields the binding energy of the 4s5s 3S1 level as 22097.03 ± 0.03 cm−1 and consequently, the first ionization potential of zinc is determined as 75769.31 ± 0.05 cm−1, that is in excellent agreement with the earlier work.  相似文献   

3.
Raman spectra of bismuth ferrite (BiFeO3) over the frequency range of 100-1500 cm−1 have been systematically investigated with different excitation wavelengths. The intensities of the two-phonon modes are enhanced obviously under the excitation of 532 nm wavelength. This is attributed to the resonant behavior when incident laser energy closes to the intrinsic bandgap of BiFeO3. The Raman spectra of BiFeO3 excited at 532 nm were measured over the temperature range from 77 to 678 K. Besides the abnormal changes of the peak position and the linewidth of the A1 mode at 139 cm−1, the prominent frequency shift, the line broadening and the decrease of the intensity for the two-phonon mode at 1250 cm−1 were observed as the temperature increased to Néel temperature (TN). All these results indicate the existence of strong spin-phonon coupling in BiFeO3.  相似文献   

4.
Near-infrared to UV and visible upconversion luminescence was observed in single-crystalline ZnO under an 800 nm infrared femtosecond laser irradiation. The optical properties of the crystal reveal that the UV and VIS emission band are due to the exciton transition (D0X) bound to neutral donors and the deep luminescent centers in ZnO, respectively. The relationship between the upconversion luminescence intensity and the pump power of the femtosecond laser reveals that the UV emission belongs to three-photon sequential band-to-band excitation and the VIS emission belongs to two-photon simultaneous defect-absorption induced luminescence. A saturation phenomenon and polarization-dependent effect are also observed in the upconversion process of ZnO. A very good optical power limiting performance at 800 nm has been demonstrated. The two- and three-photon absorption coefficients of ZnO crystal were measured to be 0.2018 cm GW−1 and 7.102 × 10−3 cm3 GW−2, respectively. The two- and three-photon cross sections were calculated to be 1.189 × 10−51 cm4 s and 1.040 × 10−80  cm6 s2, respectively.  相似文献   

5.
The optical nonlinearity of styryl7 dye in ethanol solution at different concentrations has been studied using pulsed Nd:YAG laser at 532 nm as the source of excitation. The optical responses were characterized by measuring the intensity dependent refractive index (n2) of the medium using the Z-scan technique. The open aperture Z-scan trace of the dye in solution displayed saturable absorption. The closed aperture Z-scan trace of the dye exhibited a negative nonlinearity. The styryl7 dye at 1 mM concentration exhibited nonlinear refractive co-efficient n2 = −1.24 × 10−8 cm2/W, nonlinear absorption coefficient β = − 3.9 × 10−4 cm/W and real and imaginary parts of third-order nonlinear optical susceptibility χ3 = 3.26 × 10−6 esu in ethanol. These results showed that the dye has potential application in nonlinear optics.  相似文献   

6.
The photoluminescence spectra of InAs quantum dots (QDs) embedded into four types of InxGa1−xAs/GaAs (x = 0.10, 0.15, 0.20 and 0.25) multi quantum well MBE structures have been investigated at 300 K in dependence on the QD position on the wafer. PL mapping was performed with 325 nm HeCd laser (35 mW) focused down to 200 μm (110 W/cm2) as the excitation source. The structures with x = 0.15 In/Ga composition in the InxGa1−xAs capping layer exhibited the maximum photoluminescence intensity. Strong inhomogeneity of the PL intensity is observed by mapping samples with the In/Ga composition of x ≥ 0.20-0.25. The reduction of the PL intensity is accompanied by a gradual “blue” shift of the luminescence maximum at 300 K as follows from the quantum dot PL mapping. The mechanism of this effect has been analyzed. PL peak shifts versus capping layer composition are discussed as well.  相似文献   

7.
The nonlinear optical properties and photoinduced anisotropy of an azobenzene ionic liquid-crystalline polymer were investigated. The single beam Z-scan measurement showed the polymer film possessed a value of nonlinear refractive index n2 = −1.07 × 10−9 cm2/W under a picosecond 532 nm excitation. Photoinduced anisotropy in the polymer was studied through dichroism and photoinduced birefringence. A photoinduced birefringence value Δn ∼ 10−2 was achieved in the polymer film. The mechanism for the nonlinear optical response and the physical process of photoinduced anisotropy in the polymer were discussed.  相似文献   

8.
A series of NaY1−yEuy(WO4)2−x(MoO4)x (x=0−2 and y=0.06−0.15) phosphors have been prepared by a combustion route. X-ray powder diffraction, photoluminescence excitation and emission spectra were used to characterize the resulting samples. The excitation spectra of these phosphors show the strongest absorption at about 396 nm, which matches well with the commercially available n-UV-emitting GaN-based LED chip. Their emission spectra show an intense red emission at 616 nm due to the 5D07F2 electric dipole transition of Eu3+. As the Mo content increases, the intensity of the 5D07F2 emission of Eu3+ activated at wavelength of 396 nm increases and reaches a maximum when the relative ratio of Mo/W is 2:3. The intense red-emission of the tungstomolybdate phosphors at near-UV excitation suggests that the material is a potential candidate for white light emitting diode (WLEDs).  相似文献   

9.
We have investigated temporal behavior of the photoluminescence (PL) spectra of thin films containing CdSe/ZnS quantum dots irradiated by 532 nm laser radiation and gamma-rays. Under ∼100 W/cm2 laser radiation, the PL intensity (IPL) increases with irradiation time upto about 500 s and thereafter declines linearly. The wavelength of the PL emission (λpeak) exhibits a blue-shift with exposure time. Upon simultaneous irradiation by 100 W/cm2 532-nm laser, as well as 0.57 and 1.06 MeV gamma-rays, the temporal behaviors of both IPL and λpeak are significantly different; IPL increases to a saturation level, and the magnitude of the blue-shift in λpeak is reduced. We discuss possible mechanisms underlying these results.  相似文献   

10.
We present new data on the even-parity Rydberg states of atomic thallium using two-step three-photon laser excitation technique in conjunction with a thermionic diode ion detector. Atoms are excited from the 6p 2P1/2 ground state to the 7p 2P1/2 intermediate state via two-photon excitation and subsequently promoted to the high lying ns 2 S1/2 and nd 2D3/2 Rydberg states. The first ionization potential of thallium is determined as 49,266.66(1) cm-1 using data for the ns 2 S1/2 (25 ≤ n ≤ 54) and nd 2D3/2 (24 ≤ n ≤ 65) Rydberg series. This value is believed to be more accurate because the contribution due to the hyperfine structure splitting of the 7p 2P1/2 state (0.07185 cm-1) is much smaller as compared to that of the 6p 2P1/2 ground state (0.711 cm-1).  相似文献   

11.
Ultrafine Ce1−xNdxO2−δ (x=0-0.25) powders were synthesized by self-propagating room temperature synthesis. Raman spectra were measured at room temperature in the 300-700 cm−1 spectral range. The shift and asymmetric broadening of the Raman F2g mode at about 454 cm−1 in pure and doped ceria samples could be explained with combined size and inhomogenous strain effects. Increased concentration of O2− vacancies with doping is followed by an appearance of new Raman feature at about 545 cm−1.  相似文献   

12.
The optical and electrical properties of Co2+ ions in CdSe have been investigated. Absorption, photoluminescence, electron paramagnetic resonance, and Hall measurements were used to characterize a cobalt-doped (1×1019 cm−3) single crystal. Infrared absorption and emission spectra associated with transitions between the 4A2(F) ground state and the 4T1(F) and 4T2(F) excited states are described. At 10 K, spin-orbit splittings result in three structured absorption bands associated with the 4A2(F) to 4T1(F) transition having zero-phonon lines at 4926, 5101, and 5724 cm−1. The 4A2(F) to 4T2(F) transition shows two zero-phonon lines at 2874 and 3286 cm−1, also accompanied by vibronic structure. Intrinsic lattice modes explain most of the sharp-line structure observed at low temperature, except for a subset of peaks where local modes (25-30 cm−1) are invoked. Using below-band-gap light, selective excitation allows detection of the 4T1(F) to 4A2(F) recombination at liquid-helium temperatures. The activation of free carriers in our n-type material containing shallow donors is affected by the presence of cobalt, and we find the Co+/++ level to be about 34 meV below the conduction band of CdSe.  相似文献   

13.
Vacuum ultraviolet (VUV) luminescence from a Nd3+:(La1−x,Bax)F3−x (x=0.1) and a Nd3+:LaF3 single crystal grown by the micro-pulling-down method modified for fluoride crystal growth is discussed. Emission resulting from excitation with 157 nm pulses of a F2 laser and by 290 nm femtosecond pulses of a Ti:sapphire laser show that the luminescence spectral and temporal characteristics are similar for both excitation cases and that they have good prospects as a VUV laser material.  相似文献   

14.
ZnS nanoparticles were prepared by a simple chemical method and using PVP (poly vinylpyrrolidone) as capping agent. The sample was characterized by UV-vis spectrophotometer, X-ray diffraction (XRD) and Z-scan technique. XRD pattern showed that the ZnS nanoparticles had zinc blende structure with an average size of about 2.18 nm. The value of band gap of these nanoparticles was measured to be 4.20 eV. The nonlinear optical properties of ZnS nanoparticles in aqueous solution were studied by Z-scan technique using CW He-Ne laser at 632.8 nm. The nonlinear absorption coefficient (β) was estimated to be as high as 3.2×10−3 cm/W and the nonlinear refractive index (n2) was in order of 10−8 cm2/W. The sign of the nonlinear refractive index obtained negative that indicated this material exhibits self-defocusing optical nonlinearity.  相似文献   

15.
Magnetoresistance and Hall coefficient of air-stable potassium-intercalated graphite sheets (hereafter abbreviated as K-PGS) were determined at room temperature. The magnitude of the magnetoresistance and the absolute value of Hall coefficient of K-PGS decreased with increasing potassium content of K-PGS, nK/nC. Two-carrier model was used for calculating carrier density and mobility. The electron density increased with increasing nK/nC: 3.07×1020 cm−3 (nK/nC=0.005), 5.67×1020 cm−3 (nK/nC=0.008) and 6.40×1020 cm−3 (nK/nC=0.011). The value of the electron density of K-PGS with nK/nC=0.011 (nominal composition KC91) was about 80% of the reported value, 7.8×1020 cm−3, for KC48 (nK/nC=0.021) prepared from HOPG (highly oriented pyrolytic graphite). The mobility decreased with increasing nK/nC: 2.11×103 cm2 V−1 s−1 (nK/nC=0.005), 1.42×103 cm2 V−1 s−1 (nK/nC=0.008) and 1.34×103 cm2 V−1 s−1 (nK/nC=0.011). The value of the mobility of K-PGS with nK/nC=0.011 was about 60% of the reported value (2300 cm2 V−1 s−1) for KC48 prepared from HOPG.  相似文献   

16.
ZnO films prepared from the ZnO target containing 2% AlN are transparent irrespective of radio frequency (RF) power. The obtained ZnO films have the carrier density of 3.8 × 1020 cm−3 or less and the low mobility of 5.3-7.8 cm2/(V s). In the case of 5% AlN target, ZnO films prepared at 40, 60 and 80 W are transparent, whereas ZnO films prepared at 100 and 120 W are colored. As RF power increases from 40 to 120 W, the carrier density increases straightforwardly up to 5.5 × 1020 cm−3 at 100 W and is oppositely reduced to 3.2 × 1020 cm−3 at 120 W. In the case of 10% AlN target, ZnO films prepared at 60 W or more are colored, and have the carrier density of 4 × 1020 cm−3 or less. The N-concentration in these colored films is estimated to be 1% or less. The Al-concentration in the ZnO films prepared from the 5 and 10% AlN targets is higher than 2%. The carrier density of the ZnO films containing Al and N atoms is nearly equal to that of ZnO films doped with Al atoms alone. There is no evidence in supporting the enhancement of the carrier density via the formation of N-AlxZn4−x clusters (4 ≥ x ≥ 2).  相似文献   

17.
This paper presents an analytical and numerical investigation of an intense circularly polarized wave propagating along the static magnetic field parallel to oscillating magnetic field in magnetoactive plasma. In the relativistic regime such a magnetic field is created by pulse itself. The authors have studied different regimes of propagation with relativistic electron mass effect for magnetized plasma. An appropriate expression for dielectric tensor in relativistic magnetoactive plasma has been evaluated under paraxial theory. Two modes of propagation as extraordinary and ordinary exist; because of the relativistic effect, ultra-strong magnetic fields are generated which significantly influence the propagation of laser beam in plasma. The nature of propagation is characterized through the critical-divider curves in the normalized beam width with power plane For given values of normalized density (ωp/ω) and magnetic field (ωc/ω) the regions are namely steady divergence (SD), oscillatory divergence (OD) and self-focusing (SF). Numerical computations are performed for typical parameters of relativistic laser-plasma interaction: magnetic field B = 10-100 MG; intensity I = 1016 to 1020 W/cm2; laser frequency ω = 1.1 × 1015 s−1; cyclotron frequency ωc = 1.7 × 1013 s−1; electron density ne = 2.18 × 1020 cm−3. From the calculations, we confirm that a circularly polarized wave can propagate in different regimes for both the modes, and explicitly indicating enhancement in wave propagation, beam focusing/self-guiding and penetration of E-mode in presence of magnetic field.  相似文献   

18.
Rotationally resolved pulsed-field-ionization zero-kinetic-energy photoelectron spectra of the 00, 61 and 41 vibrational levels of the ground electronic state of the formaldehyde cation were recorded using a resonant three-color three-photon excitation scheme. The first adiabatic ionization energy of CH2O (87793.33(1.30) cm−1) and the rigid-rotor rotational constants (A+ = 8.874(8) cm−1, B+ = 1.342(15) cm−1, C+ = 1.148(18) cm−1) of the vibronic ground state of CH2O+ were derived. A strong a-type Coriolis interaction between the 61 and 41 vibrational levels was observed. The Coriolis coupling parameter and the deperturbed fundamental vibrational frequencies of the in-plane-rocking mode ν6 and the out-of-plane bending mode ν4 were determined to be 8.70(10) cm−1, 823.67(30) cm−1 and 1036.50(30) cm−1, respectively. The intensity distribution of the photoelectron spectra was analyzed in the realm of a simple photoionization model.  相似文献   

19.
The spectroscopic study of trivalent ytterbium doped Li6Y(BO3)3 is conducted in the UV-visible and infrared range. An excitation in the charge transfer band of ytterbium has been selected in order to reduce the reabsorption effect on the IR emission intensity. The maximum of the emission is located at 972 nm for an excitation at 230 nm. The energy level assignment has been successfully conducted using vibrational spectroscopy to distinguish the pure electronic transitions from the phonon-assisted ones. The splitting of the 2F5/2 and 2F7/2 components is equal to 523 cm−1 and 676 cm−1, respectively. The decay time dependence as a function of the concentration is also reported. The calculated value τrad is about (1.03 ± 0.01) ms for the 1% doped material. For the highest concentration, an IR excitation gives rise to the observation of a blue-green luminescence caused by two mechanisms: an erbium emission at 550 nm after upconversion and a cooperative luminescence of ytterbium ions.  相似文献   

20.
The present paper demonstrates the preparation and characterization of SnO2 semiconductor quantum dots. Extremely small ∼1.1 and ∼1.4 nm SnO2 samples were prepared by microwave assisted technique with a frequency of 2450 MHz. Based on XRD analysis, the phase, crystal structure and purity of the SnO2 samples are determined. UV-vis measurements showed that, for the both size of SnO2 samples, excitonic peaks are obtained at ∼238 and ∼245 nm corresponding to ∼1.1 nm (sample 1) and ∼1.4 nm (sample 2) sizes, respectively. STM analysis showed that, the quantum dots are spherical shaped and highly monodispersed. At first, the linear absorption coefficients for two different sizes of SnO2 quantum dots were measured by employing a CW He-Ne laser at 632.8 nm and were obtained about 1.385 and 4.175 cm−1, respectively. Furthermore, the nonlinear refractive index, n2, and nonlinear absorption coefficient, β, were measured using close and open aperture Z-scan respectively using the same laser. As quantum dots have strong absorption coefficient to obtain purely effective n2, we divided the closed aperture transmittance by the corresponding open aperture in the same incident beam intensity. The nonlinear refraction indices of these quantum dots were measured in order of 10−7 (cm2/W) with negative sign and the nonlinear absorption coefficients were obtained for both in order of 10−3 (cm/W) with positive sign.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号