首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 203 毫秒
1.
为实现水体细菌微生物快速在线监测,搭建了多波长透射光谱快速测量实验系统,利用该系统分别测量了重铬酸钾标准溶液紫外波段及中性滤光片可见波段的透射光谱,并与紫外-可见分光光度计测得的透射光谱进行对比分析,验证了实验系统测量透射光谱的准确性;以水体中常见的金黄色葡萄球菌作为研究对象,利用搭建的实验系统获取金黄色葡萄球菌溶液在220~900 nm波段的前向小角度透射光谱,进一步验证了实验系统测量细菌微生物透射光谱的准确性和快速性。结果表明,由实验系统和紫外-可见分光光度计测得的重铬酸钾标准溶液,与中性滤光片紫外波段及可见波段透射光谱的线性拟合相关系数分别为0.999 7和0.999 5,光密度误差分别在5.00%和4.58%以内,说明两个系统测量光谱的一致性较好,所搭建的实验系统测量标准样品紫外-可见透射光谱准确度较高;对于金黄色葡萄球菌,实验系统测得的透射光谱经过校正后,与紫外-可见分光光度计测得的透射光谱线性拟合的相关系数为0.999 97,两者相比的光密度误差在0.74%以内;系统重复30次细菌光谱信号采集获得平均透射光谱单次测量时间为15 s,说明该实验系统相对于紫外-可见分光光度计能够快速准确获取水体细菌微生物多波长透射光谱,在保证测量结果准确的同时缩短了光谱测量时间,为水体细菌微生物快速检测提供技术支持。  相似文献   

2.
紫外可见多波长透射光谱包含了细菌微生物对光的吸收和前向散射等信息,能反映细菌细胞的组分、大小以及形态等特征,具有细菌种属的特异性,可应用于细菌微生物的快速种类鉴别。以水体中常见细菌微生物为研究对象,实验测量了大肠埃希氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌以及肺炎克雷伯菌的紫外可见多波长透射光谱,简要分析了不同种类细菌微生物的多波长透射光谱特征;研究了透射光谱与支持向量机多向量分析方法相结合的水体细菌微生物快速识别方法,利用基于网格搜索法的训练集内部交叉验证获取建模所需最佳惩罚因子C和核函数参数g,根据最优参数和LibSVM一对一多分类法建立细菌快速分类鉴别模型。利用不同株实验细菌的透射光谱作为测试集对所建模型进行识别正确率的验证,结果表明,所建立的快速分类鉴别模型可以对选取的大肠埃希氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌以及肺炎克雷伯菌进行快速种类识别,识别正确率为100%;分类鉴别模型对不同大肠杆菌亚种的测试集识别正确率为100%,证明该模型对细菌属间鉴别具有较好的稳定性。不仅可为饮用水源细菌微生物的快速识别预警提供方法,而且可在生物医学方面作为细菌微生物鉴别的一种简便、快速、准确的手段。  相似文献   

3.
细菌多波长透射光谱包含有细菌结构、组分、浓度等信息,这些特征信息的有效提取是实现细菌微生物快速识别与检测的基础。以水体常见的大肠埃希氏菌(大肠杆菌)为研究对象,采用紫外-可见分光光度法获得了其多波长透射光谱;基于Mie散射理论,在充分考虑水体大肠杆菌散射和吸收特性的基础上,构建了240~900nm波段范围内细菌微生物多波长透射光谱的解析模型;基于该模型对250~750nm特征波段范围内的光谱进行解析,获得了大肠杆菌的体积、粒径、结构及浓度等相关参数,并将这些参数与文献及实验得到的结果进行了对比验证。结果表明,建立的多波长透射光谱解析模型能够准确表征水体细菌微生物的光谱特征,该模型可为水体细菌微生物的快速识别分析和检测提供关键数据。  相似文献   

4.
细菌多波长透射光谱包含有细菌结构、组分、浓度等信息,这些特征信息的有效提取是实现细菌微生物快速识别与检测的基础。以水体常见的大肠埃希氏菌(大肠杆菌)为研究对象,采用紫外-可见分光光度法获得了其多波长透射光谱;基于Mie散射理论,在充分考虑水体大肠杆菌散射和吸收特性的基础上,构建了240~900nm波段范围内细菌微生物多波长透射光谱的解析模型;基于该模型对250~750nm特征波段范围内的光谱进行解析,获得了大肠杆菌的体积、粒径、结构及浓度等相关参数,并将这些参数与文献及实验得到的结果进行了对比验证。结果表明,建立的多波长透射光谱解析模型能够准确表征水体细菌微生物的光谱特征,该模型可为水体细菌微生物的快速识别分析和检测提供关键数据。  相似文献   

5.
多波长透射光谱能够反映出样品细胞大小、形状、内部结构和化学组分等丰富而独特的信息,是微生物快速、实时、在线检测与识别的有利工具。将多波长透射光谱技术应用于水体致病性细菌微生物的快速有效检测对控制水体细菌微生物污染及保护饮用水源水质安全具有重要的现实意义。为了建立及发展基于多波长透射光谱技术的水体致病性细菌微生物快速有效的检测方法,采用紫外-可见分光光度计获取了多种水体致病性细菌微生物(如: 肺炎克雷伯氏菌、鼠伤寒沙门氏菌、金黄色葡萄球菌和大肠杆菌)在200~900 nm波段的多波长透射光谱,对比分析了不同细菌及同种细菌在不同浓度时的多波长透射光谱特征。结果表明: 对于同种细菌,当细菌浓度发生变化时,400~900 nm波段透射光谱形状较为一致,并且在400,450,500和550 nm波长处的光密度值与浓度具有很好的线性关系,该波段由细菌体的散射起主要作用;但在200~400 nm波段范围内,细菌透射光谱的形状随细菌浓度的变化而变化,在200,258,300和350 nm波长处的光密度值与细菌浓度分别具有很好的二次多项式关系。根据微粒的Mie散射理论,采用Levenberg-Marquardt非线性最小二乘方法对测得的四种细菌透射光谱进行了散射光谱和吸收光谱拟合,并对比分析了不同细菌散射光谱特征和吸收光谱特征,结果表明: 四种细菌散射光谱的特征峰均在245 nm波长处,但该波长处的光密度值具有明显差异性,这与不同细菌外部结构及内部结构细胞器的大小、形状等不同有关;而四种细菌吸收光谱特征峰均在260 nm波长处,且不同细菌在240~400 nm波段内吸收光谱也具有明显差异性,这与不同细菌细胞内的核酸、蛋白质等化学组分含量不同有关。该研究表明对于不同种细菌及具有不同浓度的同种细菌,测得的多波长透射光谱及计算出的散射光谱和吸收光谱特征都具有明显的不同,通过多波长透射光谱解析可以获得细菌多种特征参数,多波长透射光谱可以被用于快速有效检测水体中的致病性细菌微生物。该研究为发展水体细菌微生物快速在线监测仪提供了重要依据。  相似文献   

6.
多波长透射光谱能够反映出样品细胞大小、形状、内部结构和化学组分等丰富而独特的信息,是微生物快速、实时、在线检测与识别的有利工具。将多波长透射光谱技术应用于水体致病性细菌微生物的快速有效检测对控制水体细菌微生物污染及保护饮用水源水质安全具有重要的现实意义。为了建立及发展基于多波长透射光谱技术的水体致病性细菌微生物快速有效的检测方法,采用紫外-可见分光光度计获取了多种水体致病性细菌微生物(如:肺炎克雷伯氏菌、鼠伤寒沙门氏菌、金黄色葡萄球菌和大肠杆菌)在200~900nm波段的多波长透射光谱,对比分析了不同细菌及同种细菌在不同浓度时的多波长透射光谱特征。结果表明:对于同种细菌,当细菌浓度发生变化时,400~900nm波段透射光谱形状较为一致,并且在400,450,500和550nm波长处的光密度值与浓度具有很好的线性关系,该波段由细菌体的散射起主要作用;但在200~400nm波段范围内,细菌透射光谱的形状随细菌浓度的变化而变化,在200,258,300和350nm波长处的光密度值与细菌浓度分别具有很好的二次多项式关系。根据微粒的Mie散射理论,采用Levenberg-Marquardt非线性最小二乘方法对测得的四种细菌透射光谱进行了散射光谱和吸收光谱拟合,并对比分析了不同细菌散射光谱特征和吸收光谱特征,结果表明:四种细菌散射光谱的特征峰均在245nm波长处,但该波长处的光密度值具有明显差异性,这与不同细菌外部结构及内部结构细胞器的大小、形状等不同有关;而四种细菌吸收光谱特征峰均在260nm波长处,且不同细菌在240~400nm波段内吸收光谱也具有明显差异性,这与不同细菌细胞内的核酸、蛋白质等化学组分含量不同有关。该研究表明对于不同种细菌及具有不同浓度的同种细菌,测得的多波长透射光谱及计算出的散射光谱和吸收光谱特征都具有明显的不同,通过多波长透射光谱解析可以获得细菌多种特征参数,多波长透射光谱可以被用于快速有效检测水体中的致病性细菌微生物。该研究为发展水体细菌微生物快速在线监测仪提供了重要依据。  相似文献   

7.
水体致病菌的快速识别和检测对于水质安全预警具有重要意义。以大肠埃希菌、肺炎克雷伯氏菌、金黄色葡萄球菌和鼠伤寒沙门氏菌为研究对象,对其多波长透射光谱进行测量,提出了一种基于相似学原理、余弦相似度、皮尔逊相关系数和联合相似度算法的水体细菌种类识别方法。结果表明:不同的相似度算法对不同细菌的光谱差异性的敏感度不同,相似学原理对肺炎克雷伯氏菌的识别率最高,可达98.2%;余弦相似度和皮尔逊相关系数对金黄色葡萄球菌的识别率均为100%;联合相似度算法可实现不同算法的优势互补,有效提高识别结果的可靠性与稳定性,对低浓度肺炎克雷伯氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌和大肠埃希菌的识别率分别为98.2%、100%、94.1%和91.4%,对较高浓度的上述4种细菌的识别率分别为100%、100%、100%和96%。  相似文献   

8.
实现水体致病菌的快速识别检测对防控由水体微生物污染引起的大规模疾病爆发有重要的现实意义。生化鉴定、核酸检测等常规细菌检测方法存在耗费时间长、需要精密的实验仪器等特点,不足以满足水体细菌微生物的快速实时在线监测。由于细菌的多波长透射光谱包含较丰富的特征信息,并且这项光谱检测技术具有快速简便、无接触、无污染等优点,近年来成为细菌检测研究的热点。以肺炎克雷伯氏菌、金黄色葡萄球菌、鼠伤寒沙门氏菌、铜绿假单胞菌和大肠埃希氏菌为研究对象,通过对细菌光谱作归一化处理和方差分析得到光谱变动最显著的特征波长区间,在该区间提取200 nm处的吸光度值及短波段的斜率值作为光谱特征值,结合支持向量机对不同种类细菌进行预测。结果表明,多波长透射光谱的归一化预处理能够有效消除浓度影响,并保留完整的原始光谱信息;通过方差分析法得到特征波长区间为200~300 nm波段,在此区间内提取的五种细菌的归一化光谱趋势图的特征值分别为:200 nm处吸光度值为0.006 5,0.005 1,0.007 5,0.007 5和0.008 5,200~245 nm波段的斜率值为-62.45,-35.94,-81.30,-82.67和-103.49,250~275 nm波段处的斜率值为-15.48,-14.82,-20.91,-13.92和-26.21,280~300 nm波段处的斜率值为-29.96,-24.62,-33.71,-36.09和-30.88。对样本提取特征值并随机划分训练集和测试集,支持向量机选择惩罚因子模型以及线性核函数,通过寻优算法确定最佳的惩罚因子参数c和核函数参数g,对测试集样本进行测试,得到细菌种类的识别结果,五种细菌的预测准确率均达到100.0%。综上所述,水体致病菌的多波长透射光谱通过合适的数据预处理能够提取出具有明显差异性的光谱特征值,该光谱特征值结合支持向量机能够有效用于不同细菌种类的识别,该方法为水体细菌快速识别和实时在线监测提供了重要的技术支持。  相似文献   

9.
快速准确获取水体细菌微生物浓度信息,对饮用水卫生安全监管具有重要意义。基于多波长透射光谱技术研究了水体细菌微生物浓度定量反演方法,并重点研究了光谱数据的归一化处理方法(颗粒浓度归一化、最大值归一化、积分归一化、平均归一化)对水体细菌微生物浓度反演结果准确性的影响。基于Mie散射理论建立了大肠埃希氏菌(大肠杆菌)多波长透射光谱解析模型,通过对归一化后的光谱进行解析,获取了大肠杆菌的结构信息,并以此构建出单种细菌的多波长透射参考光谱;根据测量光谱与单种细菌参考光谱的相关性反演细菌浓度,并对比分析了不同归一化处理方法下细菌浓度反演结果的准确性。研究结果表明:与平板菌落计数法相比,平均归一化光谱反演细菌浓度的最大相对误差为0.92%,平均相对误差为0.70%,线性相关系数达到0.9984,其准确性和稳定性均为最优。本研究为水体细菌微生物的快速定量检测与预警提供了基础数据。  相似文献   

10.
通过分析细菌细胞的结构特征,将细菌菌体的多波长散射分为外部结构散射和内部结构散射两个部分,建立了细菌菌体前向散射光谱解释模型。利用该模型对大肠杆菌400~900 nm波段的前向散射光进行了快速解析,得到了大肠杆菌外部结构、内部结构的平均粒径大小及两结构占细菌体前向散射的比例;基于单细胞的散射光密度与整体细菌悬浮液光密度之间的关系可以快速检测出细菌的浓度。多次细菌浓度测量结果之间的最大差异为1.83%,且与平板法相比较,测量结果在同一量级,相对误差为3.44%。对不同生长时期的大肠杆菌和肺炎克雷伯菌进行了光谱解析,得到了两种细菌浓度及菌体大小随时间的变化曲线。研究结果不仅为细菌微生物生长过程的科学研究提供了一种快捷方法,而且为水体细菌微生物的快速检测与预警提供了技术手段。  相似文献   

11.
三种致病性细菌的SERS光谱研究   总被引:1,自引:0,他引:1  
用便携式拉曼光谱仪获得了金黄色葡萄球菌、变形杆菌、大肠杆菌在微波法制备的纳米银溶胶上的表面增强拉曼光谱。金黄色葡萄球菌在725,1 330,1 450 cm-1有明显的拉曼振动峰,变形杆菌在650,725,950,1 325,1 463 cm-1有明显的拉曼振动峰,大肠杆菌在650,950,1 125,1 242,1 320,1 457 cm-1有明显的拉曼振动峰,对各个峰进行了初步归属。三种细菌的拉曼振动峰的位置和强度区别明显,因此SERS技术可以用于大肠杆菌、金黄色葡萄球菌和变形杆菌的快速鉴别。  相似文献   

12.
溶胶-凝胶法制备TiO2-SiO2多层增透膜   总被引:3,自引:3,他引:0  
在酸催化体系中以钛酸丁酯为前驱体制得TiO2溶胶,以正硅酸乙酯(TEOS)为前驱体制得SiO2溶胶,采用提拉法在普通载玻片上镀膜。辅助MASS膜系设计软件进行模拟计算,得到了透射率为99%的膜片。根据理论模拟结果,实验采用交叉镀膜,制备出了宽带增透TiO2-SiO2多层膜,其方法有别于以往的TiO2/SiO2复合膜法。用紫外-可见分光光度计测量了样品的透射光谱。实验发现,样品具有明显的宽带增透效果:在400-700nm波段,当光线垂直入射时,增透6%左右;45°角入射时,可增透10%。  相似文献   

13.
This work presents the development of a method for rapid bacterial identification based on the autofluorescence spectrum. It was demonstrated differences in the autofluorescence spectrum in three bacterial species and the subsequent separation, through the Principal Components Analysis (PCA) technique, in groups with high likeness, that could identify the bacteria in less than 10 min. Fluorescence spectra of 60 samples of 3 different bacterial species (Escherichia coli, EC, Enterococcus faecalis, EF and Staphylococcus aureus, SA), previously identified by automated equipment Mini API, were collected in 10 excitation wavelengths from 330 to 510 nm. The PCA technique applied to the fluorescence spectra showed that bacteria species could be identified with sensitivity and specificity higher than 90% according to differences that occur within the spectra with excitation of 410 nm and 430 nm. This work presented a method of bacterial identification of three more frequent and more clinically significant species based on the autofluorescence spectra in the excitation wavelengths of 410 and 430 nm and the classification of the spectra in three groups using PCA. The results demonstrated that the bacterial identification is very efficient with such methodology. The proposed method is rapid, ease to perform and low cost compared to standard methods.  相似文献   

14.
人工神经网络用于光度法同时测定三组分染料混合物   总被引:3,自引:0,他引:3  
应用人工神经网络原理,以快速BP算法,对紫外可见吸收光谱严重重叠的三组分的染料溶液同时进行含量测定。在200~590nm的范围内,以7个特征波长处的吸收值作为网络特征参数,通过网络训练,复品红、结晶紫、藏红T的相对标准偏差分别为0.34%,0.67%,1.03%,三者的回收率在95.5%~104%之间。实验表明,该算法速度快,预测结果准确,可望用人工神经网络和光度法结合定量测定混合染料。  相似文献   

15.
食源性致病菌是引发和威胁公众健康的主要因素之一。由于食源性致病菌种类繁多,常规检测方法复杂耗时要求高,因此迫切需要一种更加快速精确的致病菌检测技术。在传统红外光谱检测致病菌的流程中,如经典的溴化钾压片法,除了压片本身的操作之外通常还需对样品进行冷冻干燥(约需2 d)等耗时前处理过程,因而不利于高通量快速检测。本研究利用硒化锌薄膜法,在硒化锌窗片上直接滴加菌液、低温(48 ℃)烘干后进行原位检测,无需漫长的冻干处理,整个检测过程在50 min之内。同时,检测所需样品量少(10 μL)无需研磨等物理破坏性的制样过程,避免了常规溴化钾压片法中研磨颗粒粗细、制片厚薄误差及易碎片、吸潮等的不利影响。四种常见食源性致病菌(大肠杆菌DH5α;沙门氏菌CMCC 50041;霍乱弧菌SH04;金黄色葡萄球菌SH10)的硒化锌薄膜法与溴化钾压片法红外谱图对比分析表明:在相同的峰值检测阈值下(透过率大于0.05%),本研究所采用的方法获得的二阶导数图谱在900~1 500 cm-1范围内可被识别的特征峰个数比溴化钾压片法明显增多(硒化锌薄膜法共计81个,溴化钾压片法共计58个),特征峰在多个位置强度显著增加(1 119,1 085和915 cm-1等),且可将溴化钾压片法中较宽的单峰或不明显的双峰显示为较明显的双峰(大肠杆菌DH5α:1 441,1 391和1 219 cm-1等; 沙门氏菌CMCC 50041:1 490,1 219和1 025 cm-1;霍乱弧菌SH04:1 441和1 219 cm-1;金黄色葡萄球菌SH10:1 491,1 397和1 219 cm-1),说明硒化锌薄膜法可以提高图谱分辨率及信噪比。基于硒化锌薄膜法的原位红外光谱法对常见食源性致病菌整体快速高通量检测将具有巨大的应用前景。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号