首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cyclone performance is determined by pressure drop and collection efficiency. This study aims to optimize the dimensions of the exit pipe to improve cyclone performance. A numerical technique was used which is based on an Eulerian–Lagrangian approach. The behavior of the cyclone was studied by solving the three-dimensional, incompressible turbulent flow governing equations. The turbulent flow was modeled by using Reynolds Stress Model. Particle trajectories were obtained by solving the particle equation of motion. The collection efficiency was obtained by releasing a specified number of particles at the inlet of the cyclone and by counting the collected particles. The model was verified by comparing the numerical results to published experimental measurements. It was found through this study that increasing exit pipe diameter decreases the pressure drop through the cyclone and affects also the collection efficiency while exit pipe length does not affect cyclone performance significantly. It was concluded that the performance of the standard cyclone can be improved by prober selection for the diameter of the exit pipe. The data obtained through this study was represented in performance maps. These maps allowed the selection of the exit pipe diameter to obtain the maximum collection efficiency while avoiding excessive pressure drop.  相似文献   

2.
The effect of cyclone inlet dimensions on the flow pattern and performance   总被引:3,自引:0,他引:3  
The effect of the cyclone inlet dimensions on the performance and flow field pattern has been investigated computationally using the Reynolds stress turbulence model (RSM) for five cyclone separators. The results show that, the maximum tangential velocity in the cyclone decreases with increasing the cyclone inlet dimensions. No acceleration occurs in the cyclone space (the maximum tangential velocity is nearly constant throughout the cyclone). Increasing the cyclone inlet dimensions decreases the pressure drop. The cyclone cut-off diameter increases with increasing cyclone inlet dimension (consequently, the cyclone overall efficiency decreases due to weakness of the vortex strength). The effect of changing the inlet width is more significant than the inlet height especially for the cut-off diameter. The optimum ratio of inlet width to inlet height b/a is from 0.5 to 0.7.  相似文献   

3.
A two-stage turbulence model based on the RNG κε model combined with the Reynolds stress model is developed in this paper to analyze the gas flow in an axial flow cyclone separator. Five representative simulation cases are obtained by changing the helix angle and leaf margins of the cyclone. The pressure field and velocity field of the five cases are simulated, and then the effects of helix angle and leaf margins on the internal flow field of the cyclone are analyzed. When the continuum fluid (air) flow is relatively convergent, the discrete particle phase is added into the continuous phase and the gas-solid two-phase flow is simulated. One-way coupling method is used to solve the two-phase flow and a stochastic trajectory model is implemented for simulation of the particle phase. Finally, the pressure drop and separation efficiency of one case are measured and compare quantitatively well with the numerical results, which validates the reliability and accuracy of the simulation method based on the two-stage turbulence model.  相似文献   

4.
This paper presents a numerical study of the gas–powder flow in a typical Lapple cyclone. The turbulence of gas flow is obtained by the use of the Reynolds stress model. The resulting pressure and flow fields are verified by comparing with those measured and then used in the determination of powder flow that is simulated by the use of a stochastic Lagrangian model. The separation efficiency and trajectory of particles from simulation are shown to be comparable to those observed experimentally. The effects of particle size and gas velocity on separation efficiency are quantified and the results agree well with experiments. Some factors which affect the performance of cyclone were identified. It is shown that the collision between gas streams after running about a circle and that just entering occurred around the junction of the inlet duct and the cylinder of the cyclone, resulting in a short-circuiting flow. The combination of flow source and sink was distributed near the axis of cyclone, forming a flow dipole at axial section. Particles entering at different positions gave different separation efficiency. A particle with size exceeding a critical diameter, which was condition-dependant, would stagnate on the wall of cyclone cone. This was regarded as one of the main reasons for the deposition on the inner conical surface in such cyclones used in the cement industry.  相似文献   

5.
对螺旋型旋风分离器进行了两相流场的三维数值模拟.气体流场通过求解三维N-S方程得到,湍流模型采用了雷诺应力模型.计算结果表明,旋风分离器内部的流场分为两部分:螺旋通道内比较稳定的流场和筒体中心区域的复合涡结构流场.对颗粒运动轨迹的计算表明,颗粒在入口处的初始位置对颗粒分离有比较显著的影响.同时得到了不同入口速度下颗粒的分级效率曲线,并给出了气体流量对旋风分离器性能的影响,结果显示:气体流量的增加会提高分离效率,但同时导致压力损失的急剧增加.  相似文献   

6.
In some diseases there is a focal pattern of velocity in regions of bifurcation, and thus the dynamics of bifurcation has been investigated in this work. A computational model of blood flow through branching geometries has been used to investigate the influence of bifurcation on blood flow distribution. The flow analysis applies the time-dependent, three-dimensional, incompressible Navier–Stokes equations for Newtonian fluids. The governing equations of mass and momentum conservation were solved to calculate the pressure and velocity fields. Movement of blood flow from an arteriole to a venule via a capillary has been simulated using the volume of fluid (VOF) method. The proposed simulation method would be a useful tool in understanding the hydrodynamics of blood flow where the interaction between the RBC deformation and blood flow movement is important. Discrete particle simulation has been used to simulate the blood flow in a bifurcation with solid and fluid particles. The fluid particle method allows for modeling the plasma as a particle ensemble, where each particle represents a collective unit of fluid, which is defined by its mass, moment of inertia, and translational and angular momenta. These kinds of simulations open a new way for modeling the dynamics of complex, viscoelastic fluids at the micro-scale, where both liquid and solid phases are treated with discrete particles.  相似文献   

7.
The FVM–LES-acoustic analogy method (FVM–LES-AAM), which is a hybrid prediction technique for the acoustical property computation, is presented and performed in this paper. The FVM–LES-AAM was developed by combining the finite volume method (FVM), the large eddy simulation (LES), and the Ffowcs Williams-Hawkings analogy algorithm (FWH-AA). To predict the acoustical properties of induction cookers, the FVM is used for discretizing the calculation field and building numerical equations, and the LES and FWH-AA are performed for computing the sound sources and predicting the far-field sound, respectively. Using the FVM with the unstructured grids method to discretize the control equation of Navier–Stokes was introduced for illuminating the above numerical simulation procedure. To prove the FVM–LES-AAM method is feasible for predicting the acoustical property of induction cookers, the simulated results were compared with some measured experimental data. The comparisons suggest that the hybrid method is accurate and reliable for the aeroacoustics analysis of induction cookers. Considering the temperature performance, furthermore, some new configurations for the noise reduction of induction cookers were designed, simulated, and discussed. The FVM–LES-AAM prediction technique shows promise as a feasible and computationally affordable approach for not only noise analysis of induction cookers, but also for other aeroacoustics problems in engineering.  相似文献   

8.
This paper presents a numerical study of the vortex eccentricity in a gas cyclone and its effect on the performance of the cyclone. The gas flow in the cyclone was modeled as an unsteady flow by the Navier–Stokes equations with the Reynolds Stress Model (RSM) as the turbulence model. The particles were modelled by the Lagrangian particle tracking (LPT) approach in an unsteady gas flow. Gas cyclones with the same dimensions and total flow rates but different numbers of inlets were simulated with the inlet velocity varying from 12 to 20 m/s. The vortex eccentricities in different cases were analyzed in terms of radial deviation and angular deviation. In addition, the frequency of the precessing vortex core (PVC) was analyzed by the fast Fourier transform (FFT). The results show that the vortex center in the single inlet cyclone has a great eccentricity and its precession center is also different from the geometric center, which reduces the particle collection efficiency. The increase in the symmetry of the inlet causes only a very small increase in the pressure drop in the simulated cases, but it can significantly reduce the vortex eccentricity, particularly by eliminating the eccentricity of the PVC center. The improvement of the vortex eccentricity can generally increase the collection efficiency for particles greater than 2.0 µm. The increase of the collection efficiency is mainly because the symmetrical vortex can restrain the short-circuiting flow of particles. The results can improve the understanding of the vortex flow in gas cyclones which may guide the optimization of gas cyclones.  相似文献   

9.
The derivation of the space averaged Navier–Stokes equations for the large eddy simulation (LES) of turbulent incompressible flows introduces two groups of terms which do not depend only on the space averaged flow field variables: the divergence of the Reynolds stress tensor and commutation errors. Whereas the former is studied intensively in the literature, the latter terms are usually neglected. This note studies the asymptotic behaviour of these terms for the turbulent channel flow at a wall in the case that the commutation errors arise from the application of a non‐uniform box filter. To perform analytical calculations, the unknown flow field is modelled by a wall law (Reichardt law and 1/αth power law) for the mean velocity profile and highly oscillating functions model the turbulent fluctuations. The asymptotics show that near the wall, the commutation errors are at least as important as the divergence of the Reynolds stress tensor. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
A large eddy simulation (LES) approach is used to study the in-cylinder turbulent flows of a direct injection gasoline engine, with emphasis on the relationship between the in-cycle turbulent fluctuations and the inter-cycle, i.e. cycle-to-cycle variation (CCV). In total 13 continuous cycles have been calculated, both the single cycle result and phase-averaged result have been compared with our PIV measurements, and reasonable agreements are obtained. Computational results show that, the in-cylinder turbulence is induced primarily by the intake jet. At the early stage of the intake stroke, both the turbulent fluctuations and cyclic variations are intensive and they are of the same magnitude order. While in the compression stroke, the decay of turbulent fluctuations are greater than that of the cyclic variations, and the ratio between them is less than 15%, and the flow field tends to be isotropic. This study demonstrated that LES is capable to describe more realistically details and rules of the in-cylinder turbulent flow and the cycle-to-cycle variations. By using LES coupled with the Q-criterion, the large scale coherent structures in the turbulent flow field can be identified.  相似文献   

11.
Six turbulence models, including standard kε, kε RNG, kω (88), revised kω (98), Reynolds stress transport model (RSTM), and two-fluid model (TFM), were applied to the simulation of a closed conduit polychromatic UV reactor. Predicted flow field and turbulent kinetic energy were compared with the experimental data from a digital particle image velocimetry (DPIV). All of the predicted flow fields were combined with a multiple segment source summation (MSSS) fluence rate model and three different microbial response kinetic models to simulate the disinfection process at two UV lamp power conditions. Microbial transport was simulated using the Lagrangian particle tracking method. The results show that the fluence distributions and the effluent inactivation levels were sensitive to the turbulence model selection. The level of sensitivity was a function of the operating conditions and the UV response kinetics of the microorganisms. Simulations with operating conditions that produced higher log inactivation or utilized microorganisms with higher UV sensitivity showed greater sensitivity to the turbulence model selection. In addition, a broader fluence distribution was found with turbulence models that predicted a larger wake region behind the lamps.  相似文献   

12.
Hydrocyclones are used in mineral industries for classification and separation of solid particles of different sizes and densities suspended in water medium. In the present study an Eulerian–Eulerian CFD simulation of a solid–liquid hydrocyclone has been carried out taking into account two solid phases and one liquid phase. The average size of the larger particle was 0.6117 and that of the smaller particle was 0.09875 mm. Three separate momentum balance equations for the three phases have been considered unlike that in the mixture model where a single momentum equation is solved for the three phases. Two turbulent models i.e. the Reynolds stress model (RSM) and the standard kε model were studied. Comparison of the two turbulence models showed slight variation in prediction of the velocity profile and the separation efficiency. The maximum deviation between the two models was observed near the wall where the stress was maximum for larger size particles.  相似文献   

13.
The Reynolds-averaged Navier–Stokes (RANS) equations were solved along with turbulence models, namely kε, kω, Reynolds stress models (RSM), and filtered Navier–Stokes equations along with Large Eddy Simulation (LES) to study the fully-developed turbulent flows in circular pipes roughened by repeated square ribs with various spacings. Solutions of these flows were obtained using the commercial computational fluid dynamics (CFD) software Fluent. The numerical results were validated against experimental measurements and other numerical data published in literature. The performance of the turbulence models was compared and discussed. All the RANS models and LES model were observed to perform equally well in predicting the time-averaged flow statistics. However no instantaneous information can be obtained from the RANS results. Therefore, when a rough overview of the flow process in a pipe roughened by repeated ribs is needed, any one of the RANS models can be of value. On the other hand, the instantaneous as well as time-averaged flows could be studied with more insight using LES, albeit at a cost of CPU effort at least one order higher.  相似文献   

14.
The low-mass loading gas cyclone separator has two performance parameters, the pressure drop and the collection efficiency (cut-off diameter). In this paper, a multi-objective optimization study of a gas cyclone separator has been performed using the response surface methodology (RSM) and CFD data. The effects of the inlet height, the inlet width, the vortex finder diameter and the cyclone total height on the cyclone performance have been investigated. The analysis of design of experiment shows a strong interaction between the inlet dimensions and the vortex finder diameter. No interaction between the cyclone height and the other three factors was observed. The desirability function approach has been used for the multi-objective optimization. A new set of geometrical ratios (design) has been obtained to achieve the best performance. A numerical comparison between the new design and the Stairmand design confirms the superior performance of the new design. As an alternative approach for applying RSM as a meta-model, two radial basis function neural networks (RBFNNs) have been used. Furthermore, the genetic algorithms technique has been used instead of the desirability function approach. A multi-objective optimization study using NSGA-II technique has been performed to obtain the Pareto front for the best performance cyclone separator.  相似文献   

15.
用大涡模拟检验湍流模型   总被引:3,自引:0,他引:3  
用大涡模拟方法对直方管内充分发展湍流运动的数值模拟,所建立的数据库可以用来检验湍流模型,本文中数据库被用来检验Demuren和Rodi文中所讨论的代数模型,并进行了讨论。  相似文献   

16.
A new dynamic subgrid-scale (SGS) model, including subgrid turbulent stress and heat flux models for stratified shear flow is proposed by using Yoshizawa’s eddy viscosity model as a base model. Based on our calculated results, the dynamic subgrid-scale model developed here is effective for the large eddy simulation (LES) of stratified turbulent channel flows. The new SGS model is then applied to the large eddy simulation of stratified turbulent channel flow under gravity to investigate the coupled shear and buoyancy effects on the near-wall turbulent statistics and the turbulent heat transfer at different Richardson numbers. The critical Richardson number predicted by the present calculation is in good agreement with the value of theoretical analysis  相似文献   

17.
The paper is focused on high-order compact schemes for direct numerical simulation (DNS) and large eddy simulation (LES) for flow separation, transition, tip vortex, and flow control. A discussion is given for several fundamental issues such as high quality grid generation, high-order schemes for curvilinear coordinates, the CFL condition for complex geometry, and high-order weighted compact schemes for shock capturing and shock–vortex interaction. The computation examples include DNS for K-type and H-type transition, DNS for flow separation and transition around an airfoil with attack angle, control of flow separation by using pulsed jets, and LES simulation for a tip vortex behind the juncture of a wing and flat plate. The computation also shows an almost linear growth in efficiency obtained by using multiple processors.  相似文献   

18.
In the present paper, a new dynamic subgrid-scale (SGS) model of turbulent stress and heat flux for stratified shear flow is proposed. Based on our calculated results of stratified channel flow, the dynamic subgrid-scale model developed in this paper is shown to be effective for large eddy simulation (LES) of stratified turbulent shear flows. The new SGS model is then applied to the LES of the stratified turbulent channel flow to investigate the coupled shear and buoyancy effects on the behavior of turbulent statistics, turbulent heat transfer and flow structures at different Richardson numbers.  相似文献   

19.
在FLUENT软件平台上,运用大涡模拟湍流模型及Smagorinsky-Lilly亚格子尺度模型,对填充有烧结铜球多孔介质的T型管道内冷热流体混合过程的流动与传热情况进行了数值计算,与未填充多孔介质时混合区域内的平均温度和温度波动、平均速度和速度波动等数据进行了对比,并对温度波动进行了功率谱密度分析.数值结果表明,多孔介质可有效削弱T型通道流体混合区域内的温度和速度波动,有效降低1 Hz至10 Hz频域中的温度波动的功率谱密度.  相似文献   

20.
Physiological pulsatile flow in a 3D model of arterial stenosis is investigated by using large eddy simulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatile flow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatile flow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope −5/3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号