首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 38 毫秒
1.
Swirling jets undergoing vortex breakdown occur in many technical applications, e.g. vortex burners, turbines and jet engines. To simulate the highly nonlinear dynamics of the flow, it is necessary to use high-order numerical methods, leading to increased computational cost. To be able to perform simulations in acceptable turn-around time, an available LES code for solving the filtered compressible Navier-Stokes equations in cylindrical coordinates using compact finite-difference schemes was parallelized for massively-parallel architectures. The parallelization was done following the ghost-cell approach for filtering in the three spatial directions. The inter-process communication is handled using the message passing interface (MPI). The weak and strong scaling properties of the code indicate that it can be used for massively parallel simulations using several thousand processors. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

2.
T. Luginsland  L. Kleiser 《PAMM》2011,11(1):577-578
We developed a numerical setup to simulate swirling jet flow undergoing vortex breakdown. Our simulation code CONCYL solves the compressible Navier-Stokes equations in cylindrical coordinates using high-order numerical schemes. A nozzle is included in the computational domain to account for more realistic inflow boundary conditions. Preliminary results of a Re = 5000 compressible swirling jet at Mach number M a = 0.6 with an azimuthal velocity as high as the maximum axial velocity (swirl number S = 1.0 ) capture the fundamental characteristics of this flow type: At a certain point in time the jet spreads and develops into a conical vortex breakdown. A stagnation point-flow in the vicinity of the jet axis is clearly visible with the stagnation point located close to the nozzle exit. The stagnation point precesses in time around the jet axis, moving up- and downstream. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

3.
Understanding transition and turbulence in the flow of shear-thinning non-Newtonian fluids remains substantially unresolved and additional research is required to develop better computational methods for wall-bounded turbulent flows of these fluids. Previous DNS studies of shear-thinning fluids mainly use purpose-built codes and simple geometries such as pipes and channels. However in practical application, the geometry of mixing vessels, pumps and other process equipment is far more complex, and more flexible computational methods are required. In this paper a general-purpose DNS approach for shear-thinning fluids is undertaken using the OpenFOAM CFD library. DNS of turbulent Newtonian and non-Newtonian flow in a pipe flow are conducted and the accuracy and efficiency of OpenFOAM are assessed against a validated high-order spectral element-Fourier DNS code – Semtex. The results show that OpenFOAM predicts the flow of shear-thinning fluids to be a little more transitional than the predictions from Semtex, with lower radial and azimuthal turbulence intensities and higher axial intensity. Despite this, the first and second order turbulence statistics differ by at most 16%, and usually much less. An assessment of the parallel scaling of OpenFOAM indicates that OpenFOAM scales very well for the CPUs from 8 to 512, but the intranode scalability is poor for less than 8CPUs. The present work shows that OpenFOAM can be used for DNS of shear-thinning fluids in the simple case of pipe flow, and suggests that more complex flows, where flow separation is often important, are likely to be simulated with accuracies that are acceptably good for engineering application.  相似文献   

4.
The present paper focuses on the analysis of two- and three-dimensional flow past a circular cylinder in different laminar flow regimes. In this simulation, an implicit pressure-based finite volume method is used for time-accurate computation of incompressible flow using second order accurate convective flux discretisation schemes. The computation results are validated against measurement data for mean surface pressure, skin friction coefficients, the size and strength of the recirculating wake for the steady flow regime and also for the Strouhal frequency of vortex shedding and the mean and RMS amplitude of the fluctuating aerodynamic coefficients for the unsteady periodic flow regime. The complex three dimensional flow structure of the cylinder wake is also reasonably captured by the present prediction procedure.  相似文献   

5.
The structure of the internal dissipation terms in composite compact schemes intended for gasdynamic simulation is considered. The main cause of the insufficient stability of high-order accurate schemes is indicated. A method for controlling the dissipative properties of schemes is proposed that makes it possible to compute compressible gas flows with strong shock waves. The supersonic turbulent unsteady flow past a two-dimensional cavity directed toward the stream is computed.  相似文献   

6.
The three-dimensional compressible Navier-Stokes equations are approximated by a fifth order upwind compact and a sixth order symmetrical compact difference relations combined with three-stage Ronge-Kutta method. The computed results are presented for convective Mach numberMc = 0.8 andRe = 200 with initial data which have equal and opposite oblique waves. From the computed results we can see the variation of coherent structures with time integration and full process of instability, formation of A -vortices, double horseshoe vortices and mushroom structures. The large structures break into small and smaller vortex structures. Finally, the movement of small structure becomes dominant, and flow field turns into turbulence. It is noted that production of small vortex structures is combined with turning of symmetrical structures to unsymmetrical ones. It is shown in the present computation that the flow field turns into turbulence directly from initial instability and there is not vortex pairing in process of transition. It means that for large convective Mach number the transition mechanism for compressible mixing layer differs from that in incompressible mixing layer.  相似文献   

7.
The effect of modeling of velocity fluctuations on the prediction of collection efficiency of cyclone separators has been numerically investigated using the Reynolds stress turbulence model (RSTM) and large eddy simulation (LES). The Eulerian–Lagrangian modeling approach of CFD code Fluent 6.3.26 has been employed to simulate the three dimensional, unsteady turbulent gas–solid flows in a Stairmand high efficiency cyclone. The simulated results have been compared with experimental observations available in the literature. The analysis of results shows that the RSTM and the LES have adequately predicted the mean flow field. Results of the present study demonstrate that the LES has good performance on prediction of fluctuating flow field and collection efficiency for each and every particle size. However, the performance of the RSTM is found poor in terms of prediction of velocity fluctuations and collection efficiency, especially for small particles. This relates to the precessing of the vortex core phenomenon, which is resolved more accurately by LES as compared to the RSTM simulation. The results suggest that the prediction of collection efficiency, especially for small particles is greatly influenced by the simulation of velocity fluctuations in cyclones.  相似文献   

8.
An implicitly implemented large eddy simulation (ILES), by using the modified fifth order WENO scheme, is applied to study the flow around the microramp vortex generator (MVG) at Mach 2.5 and Reθ = 5760. A series of new discoveries on the flow around supersonic MVG have been made by the UTA LES team including source of the momentum deficit, inflection points (surface in 3-D), Kelvin–Helmholtz instability and vortex ring generation. Most of the new discoveries, which were made by the UTA LES team and presented in 2009, were confirmed by experiment conducted by the UTA experiment team in 2010. A new 5-pair-vortex-tube model near the MVG is given based on the ILES observation.  相似文献   

9.
S. Bühler  L. Kleiser 《PAMM》2012,12(1):541-542
A numerical simulation setup is presented which allows to study a circular jet flow configuration in which the nozzle is included in the simulation domain. Direct Numerical Simulations (DNS) are performed using up to 10th order compact finite-difference schemes which are stabilized by applying a mild low-pass filter. A parallelization approach has been implemented which shows good weak and strong scaling behavior. At the inflow the Synthetic Eddy Method is employed to generate turbulent fluctuations in the nozzle boundary layer with prescribed statistics, which are imposed by a sponge (forcing) layer technique. Simulation results for the jet flow field obtained at Reynolds number ReD = 19000 and a Mach number Ma = 0.9 as well as for the acoustic near-field are found to be in good agreement with recent nozzle-jet simulation results as well as experimental findings. (© 2012 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
The multioperator approach is used to obtain high-order accurate compact differences. These differences are developed to describe convective terms of differential equations, as well as mixed derivatives, source terms, and the coefficients of metric derivatives of coordinate transformations. The same principles are used to obtain high-order compact differences for representing diffusion terms. These differences underlie multioperator composite compact schemes, which are used to compute the flow past an airfoil by integrating the nonstationary Navier-Stokes equations supplemented with the equations of a turbulent viscosity model.  相似文献   

11.
We summarize the group's progress in applying, analyzing, and improving ODT and ODT-based stochastic turbulence models like ODTLES. Compared to DNS these models span a wider range of scales while compared to RANS/LES (i) the molecular effects are retained and (ii) no assumption of scale separation is made. In this regard ODTLES has more properties of DNS than of standard LES. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

12.
一类TVD型的迎风紧致差分格式   总被引:1,自引:1,他引:0  
给出一种迎风型TVD(total variation diminishing)格式的构造方法,该方法通过限制器来抑制线性紧致格式在模拟间断流场时的非物理波动,可构造出非线性TVD型紧致格式(CTVD).然后采用该法构造出了3阶和5阶的TVD型紧致格式,并通过模拟一维组合波和Riemann问题,二维激波-涡相互干扰和激波-边界层相互作用等来考察它们的性能.数值实验表明了该类格式的高阶精度和分辨率,且过间断基本无振荡.  相似文献   

13.
14.
A spectral element—Fourier method (SEM) for Direct Numerical Simulation (DNS) of the turbulent flow of non-Newtonian fluids is described and the particular requirements for non-Newtonian rheology are discussed. The method is implemented in parallel using the MPI message passing kernel, and execution times scale somewhat less than linearly with the number of CPUs, however this is more than compensated by the improved simulation turn around times. The method is applied to the case of turbulent pipe flow, where simulation results for a shear-thinning (power law) fluid are compared to those of a yield stress (Herschel–Bulkley) fluid at the same generalised Reynolds number. It is seen that the yield stress significantly dampens turbulence intensities in the core of the flow where the quasi-laminar flow region there co-exists with a transitional wall zone. An additional simulation of the flow of blood in a channel is undertaken using a Carreau–Yasuda rheology model, and results compared to those of the one-equation Spalart-Allmaras RANS (Reynolds-Averaged Navier–Stokes) model. Agreement between the mean flow velocity profile predictions is seen to be good. Use of a DNS technique to study turbulence in non-Newtonian fluids shows great promise in understanding transition and turbulence in shear thinning, non-Newtonian flows.  相似文献   

15.
A theoretical and numerical study using the unsteady, 3D Navier-Stokes equations to generate axisymmetric vortex rings is reported. Increasing the vorticity, the vortex ring transition to a turbulent state are analyzed. After transition to a turbulent stage, the self-similarity of the temporal evolution of the flow is observed. Then we can compare sound radiated by the vortex ring to jet noise, at similar Reynolds number and low Mach number. The agreement between the simulation results and the simplified model is good. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

16.
A. Jocksch  L. Kleiser 《PAMM》2007,7(1):4110009-4110010
We performed highly resolved large-eddy simulations (LES) of transitional shock-wave/boundary-layer interactions (SW/ BLI) in which a turbulent spot passes through a laminar shock-induced separation bubble. The initial condition consists of a laminar boundary-layer solution over a flat plate with a superimposed oblique shock which induces a separation bubble on the plate. An upstream-positioned initial disturbance triggers the turbulent spot that develops and encounters the SW/BLI region. Unlike the laminar boundary layer it does not separate but tunnels the SW/BLI region. Compared to a simulation without the SW/BLI region the spot growth is increased significantly during the passage. This finding supports the results of previous direct numerical simulations (DNS) in the literature. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

17.
Physiological pulsatile flow in a 3D model of arterial stenosis is investigated by using large eddy simulation (LES) technique. The computational domain chosen is a simple channel with a biological type stenosis formed eccentrically on the top wall. The physiological pulsation is generated at the inlet using the first harmonic of the Fourier series of pressure pulse. In LES, the large scale flows are resolved fully while the unresolved subgrid scale (SGS) motions are modelled using a localized dynamic model. Due to the narrowing of artery the pulsatile flow becomes transition-to-turbulent in the downstream region of the stenosis, where a high level of turbulent fluctuations is achieved, and some detailed information about the nature of these fluctuations are revealed through the investigation of the turbulent energy spectra. Transition-to-turbulent of the pulsatile flow in the post stenosis is examined through the various numerical results such as velocity, streamlines, velocity vectors, vortices, wall pressure and shear stresses, turbulent kinetic energy, and pressure gradient. A comparison of the LES results with the coarse DNS are given for the Reynolds number of 2000 in terms of the mean pressure, wall shear stress as well as the turbulent characteristics. The results show that the shear stress at the upper wall is low just prior to the centre of the stenosis, while it is maximum in the throat of the stenosis. But, at the immediate post stenotic region, the wall shear stress takes the oscillating form which is quite harmful to the blood cells and vessels. In addition, the pressure drops at the throat of the stenosis where the re-circulated flow region is created due to the adverse pressure gradient. The maximum turbulent kinetic energy is located at the post stenosis with the presence of the inertial sub-range region of slope −5/3.  相似文献   

18.
Multilevel finite difference methods can achieve high-order accuracy by using compact stencils and they are preferred in numerical simulation of wave advections when high accuracy in both the amplitude and phase is needed. Based on the modified equation theory, we present two general approaches that can effectively design highly accurate multilevel difference schemes. Numerical experiments are performed to verify the quality of the multilevel difference methods derived in this paper.  相似文献   

19.
Samir Karaa 《PAMM》2007,7(1):1025601-1025602
Many recent works have demonstrated the efficiency of high-order compact (HOC) difference schemes on the stream-function and vorticity formulation of 2-D incompressible Navier-Stokes equations. HOC discretizations induce cross spatial derivatives which are treated explicitly in most ADI schemes. Recently, Karaa and Zhang proposed a fourth-order ADImethod for solving convection-diffusion problems efficiently. In this work, we extend this method to the solution of incompressible Navier-Stokes equations. The driven flow in a square cavity is used as a model problem and numerical results are compared with other results. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

20.
From CAA to CFD     
In this contribution, an application of a computational aeroacoustic code as a hybrid Zonal LES tool is presented. The here used hybrid approach is based on a novel implementation of the Non-Linear Perturbation Equations extended with fluctuating viscous terms, denoted as “Overset” since a perturbation analysis is performed on top of a background flow. The extension to LES is demonstrated with isotropic decaying turbulence, where the expected temporal decay and scaling of the reference DNS data is recovered with the LES employing a classical Smagorinsky model. Furthermore, a conceptual approach is presented that describes the investigation of sound sources with application to trailing-edge noise. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号