首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 651 毫秒
1.
We develop a model of differential equations for a supply chain with delivery time delays between every adjacent firms. Based on the supply chain model, we provide a new perspective of the bullwhip effect and show that the bullwhip effect is intrinsic in supply chains in the sense that the equilibrium state of each firm in the supply chain is a cumulative forward product of the ratios of order fulfillment and placement between adjacent firms toward the end customer demand. We also show that it is the multiple time delays instead of the constant end consumer demand that determine the stability of the equilibrium states. However, the consumer demand has impacts on the stability of the equilibrium states of the supply chain when the end retailer’s inventory decisions are linearly related to the end consumer demand.  相似文献   

2.
The bullwhip effect problem is one of the most important issues in supply chain management. Limited information sharing increases the difficulty of reducing the bullwhip effect and leads to inefficient supply chain management. The purpose of this paper is to explore new ways to reduce the bullwhip effect in supply chain systems that face uncertainties with respect to information sharing. We first present a supply chain state transition model, based on which we explore the endogenous mechanism of bullwhip effect, especially those related to impacts from limited information sharing. Then we propose a novel inventory control method and study the corresponding control optimization problem, with the aim of reducing inventory volatility in supply chains. Both quantitative analysis and simulation study are conducted. Simulation results show the effectiveness and flexibility of our proposed method in reducing bullwhip effect and in improving supply chain performance, even under conditions of limited information sharing.  相似文献   

3.
The bullwhip effect in particular, and supply chain volatility in general, has been the subject of much analytical and empirical investigation by researchers. One goal of this work has been to determine supply chain designs and policies that minimize volatility. Using a system dynamics approach, we use three distinct supply chain volatility metrics to compare the ability of two alternative pipeline inventory management policies to respond to a demand shock. The results indicate that no one policy dominates on all three metrics of supply chain volatility. A simplistic static pipeline policy minimizes the bullwhip effect and lessens the likelihood of on-hand inventory oscillations, while a more sophisticated dynamic pipeline policy may converge more rapidly to the new equilibrium. In addition, simulation results suggest that the dynamic policy provides better customer service through fewer stockouts and backorders.  相似文献   

4.
In supply chain management, one of the most critical problems which require a lot of effort to deal with is how to quantify and alleviate the impact of bullwhip effect – the phenomenon in which information on demand is distorted while moving upstream. Although it is well established that demand forecast, lead time, order batching, shortage gaming and price fluctuation are the main sources that lead to the bullwhip effect, the problem of quantifying bullwhip effect still remain unsolved in many situations due to the complex nature of the problem. In this research, a measure of bullwhip effect will be developed for a simple two-stage supply chain that includes only one retailer and one supplier in the environment where the retailer employs base stock policy for their inventory and demand forecast is performed through the first-order autoregressive model, AR(1). The effect of autoregressive coefficient and lead time on this measure will then be investigated.  相似文献   

5.
Variability in orders or inventories in supply chain systems is generally thought to be caused by exogenous random factors such as uncertainties in customer demand or lead time. Studies have shown, however, that orders or inventories may exhibit significant variability even if customer demand and lead time are deterministic. In this paper, we investigate how this class of variability, chaos, may occur in a multi-level supply chain and offer insights into how to manage relevant supply chain factors to eliminate or reduce system chaos. The supply chain is characterized by the classical beer distribution model with some modifications. We observe the supply chain dynamics under the influence of various factors: demand pattern, ordering policy, demand-information sharing, and lead time. Through proper decision-region formation, the effect of various factors on system chaos is investigated using a factorial design. The degree of system chaos is quantified using the Lyapunov exponent across all levels of the supply chain. This study shows that, to reduce the degree of chaos in the supply chain system, the adjustment parameters for both inventory and supply line discrepancies should be more comparable in magnitude. Counter-intuitively, in certain decision regions, sharing demand information can do more harm than good. Similar to the bullwhip effect observed previously in demand, we discover the phenomenon of “chaos-amplification” in inventory across supply chain levels.  相似文献   

6.
This work analyzes a two echelon (warehouse–retailer) serial supply chain to study the impact of information sharing (IS) and lead time on bullwhip effect and on-hand inventory. The customer demand at the retailer is assumed to be an autoregressive (AR(1)) process. Both the echelons use a minimum mean squared error (MMSE) model for forecasting lead time demand (LTD), and follow an adaptive base-stock inventory policy to determine their respective order quantities. For the cases of without IS and inter as well as intra echelon IS, expressions for the bullwhip effect and on-hand inventory for the warehouse are obtained, considering deterministic lead-time. The results are compared with the previous research work and an easy analysis of the various bullwhip effect expressions under different scenarios, is done to understand the impact of IS on the bullwhip effect phenomenon. It is shown that some part of bullwhip effect will always remain even after sharing both inter as well as intra echelon information. Further, with the help of a numerical example it is shown that the lead time reduction is more beneficial in comparison to the sharing of information in terms of reduction in the bullwhip effect phenomenon.  相似文献   

7.
In this paper, we quantify the impact of the bullwhip effect – the phenomenon in which information on demand is distorted as moving up a supply chain – for a simple two-stage supply chain with one supplier and one retailer. Assuming that the retailer employs a base stock inventory policy, and that the demand forecast is performed via a mixed autoregressive-moving average model, ARMA(1, 1), we investigate the effects of the autoregressive coefficient, the moving average parameter, and the lead time on the bullwhip effect.  相似文献   

8.
This paper analyzes the bullwhip effect in multi-stage supply chains operated with linear and time-invariant inventory management policies and shared supply chain information. Such information includes past order sequences and inventory records at all supplier stages. The paper characterizes the stream of orders placed at any stage of the chain when the customer demand process is known and ergodic, and gives an exact formula for the variance of the orders placed. The paper also derives robust analytical conditions, based only on inventory management policies, to predict the presence of the bullwhip effect and bound its magnitude. These results hold independently of the customer demand. The general framework proposed in this paper allows for any inventory replenishment policies, any ways of sharing and utilizing information, and any customer demand processes. It is also shown as a special case that sharing customer demand information across the chain significantly reduces, but does not completely eliminate, the bullwhip effect.  相似文献   

9.
《Applied Mathematical Modelling》2014,38(9-10):2353-2365
The “bullwhip” effect is a major cause of supply chain deficiencies. This phenomenon refers to grow the amplification of demand or inventory variability as it moves up the supply chain. Supply chain managers experience this variance amplification in both inventory levels and orders. Other side, dampening variance in orders may have a negative impact on customer service due to the increase in the inventory variance. This paper with simulating a three stage supply chains consisting of a single retailer, single wholesaler and single manufacturer under both centralized and decentralized chains. In this paper, it is intended to analysis the causes of bullwhip effect from two dimensions of order and inventory variance using the response surface methodology. The results show that in both supply chains, rationing factor is considered as the least important cause of bullwhip effect. While the wholesaler’s order batching and the chain’s order batching are considered as the main causes for the bullwhip effect in the decentralized and centralized chains, respectively.  相似文献   

10.
Information visibility is generally useful for decision makers distributed across supply chains. Availability of information on inventory levels, price, lead times, demand, etc. can help reduce uncertainties as well as alleviate problems associated with bullwhip effect. A majority of extant literature in this area assume a static supply chain network configuration. While this was sufficient a few decades ago, advances in e-commerce and the ease with which order processing can be performed over the Internet necessitates appropriate dynamic (re)configuration of supply chains over time. Each node in the supply chain is modeled as an actor who makes independent decisions based on information gathered from the next level upstream. A knowledge-based framework is used for dynamic supply chain configuration and to consider the effects of inventory constraints and ‘goodwill,’ as well as their effects on the performance dynamics of supply chains. Preliminary results indicate that neither static nor dynamic configurations are consistently dominant. Scenarios where static configurations perform better than the modeled system are identified.  相似文献   

11.
In this paper, a two-degrees-of-freedom Internal Model Control structure is incorporated in production inventory control for a supply chain system. This scheme presents an intuitive and simple parametrization of controllers, where inventory target tracking and disturbance (demand) rejection in the inventory level problems are treated separately. Moreover, considering that the lead times are known, this scheme presents a perfect compensation of the delay making the stabilization problem easier to handle. This control structure is formulated for a serial supply chain in two ways (by using a centralized and a decentralized control approach). The behavior of these inventory control strategies is analyzed in the entire supply chain. Analytical tuning rules for bullwhip effect avoidance are developed for both strategies. The results of controller evaluations demonstrate that centralized control approach enhances the behavior with respect to the inventory target tracking, demand rejection and bullwhip effect in the supply chain systems.  相似文献   

12.
Recently, researchers have shown increased interest in quantifying the bullwhip effect, and several attempts have been made to alleviate this phenomenon within supply chain management; however, absent from the current literature surrounding this topic is an in-depth analysis of the impact of different distribution systems, particularly cross-docking systems, upon the behavior of the bullwhip effect. This research aims to investigate the measure of the bullwhip effect in three different supply-chains; (I) with a central warehouse, (II) with a cross-docking system, and (III) without any distribution systems. These three different supply chains are subsequently analyzed to discover which supply chain helps reduce the bullwhip effect more. In doing so, the reasoning here is based on the premise that the demand process follows a mixed autoregressive-moving average model and all the stages employ the base stock policy for inventory replenishment, if necessary. In addition, the above mentioned supply chains are assumed to have two members in the retailer stage, with a different market share of the customer demand. It was found that factors such as lead time, market share of each retailer, autoregressive coefficient and moving average parameter contribute to the selection of the most effective distribution system.  相似文献   

13.
通过建立含有季节性自回归移动平均需求过程的供应链,零售商采用最小均方差预测技术预测提前期需求,分析(R,D)、(R,S)、(R,βS)、(R,γO)和(R,γO,βS)五种补货策略下的牛鞭效应.研究结果表明:(R,γO)补货策略是弱化牛鞭效应的最优补货策略,然而(R,γO)补货策略时出现了反牛鞭效应,无法保证供应链的安全供给.实践中当库存量调节系数和订货量调节系数较大时,(R,βS)补货策略能有效弱化牛鞭效应,当库存量调节系数和订货量调节系数较小时,(R,γO,βS)补货策略能有效弱化牛鞭效应;对于(R,βS)和(R,γO,βS)补货策略,牛鞭效应随着库存平滑系数的增大而增大;对于(R,γO)和(R,γO,βS)补货策略,牛鞭效应随着订货平滑系数的增大而增大;对于(R,S)、(R,βS)和(R,γO,βS)补货策略,牛鞭效应随着订货提前期的增大而增大;对于(R,γO)和(R,γO,βS)补货策略,牛鞭效应随着时刻t的增大而增大,但时刻t增大到一定程度时,牛鞭效应值基本不变.  相似文献   

14.
在供应链运作过程中,同时存在牛鞭效应与反牛鞭效,若仅考虑到供应链的成本、需求偏差等问题,这种存在会因有限理性的驱使使得牛鞭效应弱化与反牛鞭效应强化.因此,认为供应链的上下游在周期内会表现出牛鞭效应弱化与反牛鞭效应强化的联合作用,联合作用使得单个企业达到低平均库存成本,也意味着供应链的整体库存最低且整体市场需求偏差最低,间接地、自动地从整体上消除牛鞭效应或反牛鞭效应,使得整条供应链不管是短期的还是长期来看是最佳的,若是长期,还会给供应链企业带来显著的战略优势.  相似文献   

15.
客户需求信息的失真是导致牛鞭效应存在的原因,基于零售商的历史订单数据对其需求进行预测可以部分消除牛鞭效应。论文基于零售商-分销商二级供应链视角,分析了在零售商的需求为线性自回归模式的二级供应链中,分销商利用零售商历史订单数据和现有订单数据进行需求预测时自身库存成本的变更以及整个供应链的牛鞭效应的缓解程度。结果表明:分销商利用历史订单数据进行库存的决策可以显著地降低自己的平均库存和需求的波动,这种降低程度在零售商的订货提前期较大的情况下比较明显,但是零售商的需求预测相关系数对它影响不大。  相似文献   

16.

The coordination of order policies constitutes a great challenge in supply chain inventory management as various stochastic factors increase its complexity. Therefore, analytical approaches to determine a policy that minimises overall inventory costs are only suitable to a limited extent. In contrast, we adopt a heuristic approach, from the domain of artificial intelligence (AI), namely, Monte Carlo tree search (MCTS). To the best of our knowledge, MCTS has neither been applied to supply chain inventory management before nor is it yet widely disseminated in other branches of operations research. We develop an offline model as well as an online model which bases decisions on real-time data. For demonstration purposes, we consider a supply chain structure similar to the classical beer game with four actors and both stochastic demand and lead times. We demonstrate that both the offline and the online MCTS models perform better than other previously adopted AI-based approaches. Furthermore, we provide evidence that a dynamic order policy determined by MCTS eliminates the bullwhip effect.

  相似文献   

17.
Bullwhip effect in supply chain is a phenomenon which can emerge in both inventory levels and replenishment orders. Bullwhip effect causes variations in cash conversion cycle (CCC) across cash flow of supply chain. As a result, it can lead to inefficiencies such as cash flow bullwhip (CFB). Due to negative impact of CFB on cash flow of supply chain, it can lead to a decrease in efficiency of supply chain management (SCM). That is why supply chain modeling is a proper start point for effective management and control of the CFB. This paper aims to analyze concurrent impact of causes of inventory bullwhip effect and effect of their interactions on CFB based on generalized OUT policy from aspect of CCC variance. To this end, first we develop system dynamics structure of beer distribution game as simulation model which includes multi-stage supply chain under both centralized and decentralized supply chains. Then, in order to develop CFB function, we design experiments in developed simulation model using response surface methodology (RSM). Results demonstrate that if each chain member uses generalized OUT policy as replenishment model, there still exists CFB in both chains and CFB largely stems from rationing and shortage gaming in both centralized and decentralized supply chain. In addition, when information on ordering parameters are not shared among members, parameters of downstream stage (i.e. retailer) are more important than parameters of upstream stage (i.e. manufacturer) in reducing CFB function.  相似文献   

18.
This paper analyzes the propagation and amplification of order fluctuations (i.e., the bullwhip effect) in supply chain networks operated with linear and time-invariant inventory management policies. The supply chain network is allowed to include multiple customers (e.g., markets), any network structure, with or without sharing information. The paper characterizes the stream of orders placed by any supplier for any stationary customer demand processes, and gives exact formulas for the variance of the orders placed and the amplification of order fluctuations. The paper also derives robust analytical conditions, based only on inventory management policies, to predict the presence of the bullwhip effect for any network structure, any inventory replenishment policies, and arbitrary customer demand processes. Numerical examples show that the analytical results accurately quantify the bullwhip effect; managerial insights are drawn from the analysis. The methodology presented in this paper generalizes those in previous studies for serial supply chains.  相似文献   

19.
This paper considers an inventory setting in which the historical data used for demand forecasting is delayed. When the replenishment is controlled via an order-up-to policy, we show that such delays reduce the variability of the order history and dampen the bullwhip effect. We discuss the intuition behind this result.  相似文献   

20.
Lee et al. (1997) advocated the idea of sharing demand and order information among different supply chain entities to mitigate the bullwhip effect. Even with full supply chain visibility afforded by IT systems with requirements planning and with no information distortion, we identify a “core” bullwhip effect inherent to any supply chain because of the underlying demand characteristics and replenishment lead times. In addition, we quantify an incremental bullwhip effect as various operational deviations (inaccurate order placements, batching, lag in sharing demand forecast) contribute incrementally to the variance of the order quantity not only at the node where the deviation is taking place but also at all upstream supply chain nodes. We discuss some managerial implications of our results in the context of a UK manufacturer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号