首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A lattice Boltzmann method is developed to simulate three-dimensional solid particle motions in fluids. In the present model, a uniform grid is used and the exact spatial location of the physical boundary of the suspended particles is determined using an interpolation scheme. The numerical accuracy and efficiency of the proposed lattice Boltzmann method is demonstrated by simulating the sedimentation of a single sphere in a square cylinder. Highly accurate simulation results can be achieved with few meshes, compared with the previous lattice Boltzmann methods. The present method is expected to find applications on the flow systems with moving boundaries, such as the blood flow in distensible vessels, the particle-flow interaction and the solidification of alloys.  相似文献   

2.
《Physics letters. A》2006,354(3):173-182
A momentum exchange-based immersed boundary-lattice Boltzmann method is presented in this Letter for simulating incompressible viscous flows. This method combines the good features of the lattice Boltzmann method (LBM) and the immersed boundary method (IBM) by using two unrelated computational meshes, an Eulerian mesh for the flow domain and a Lagrangian mesh for the solid boundaries in the flow. In this method, the non-slip boundary condition is enforced by introducing a forcing term into the lattice Boltzmann equation (LBE). Unlike the conventional IBM using the penalty method with a user-defined parameter or the direct forcing scheme based on the Navier–Stokes (NS) equations, the forcing term is simply calculated by the momentum exchange of the boundary particle density distribution functions, which are interpolated by the Lagrangian polynomials from the underlying Eulerian mesh. Numerical examples show that the present method can provide very accurate numerical results.  相似文献   

3.
In this paper we address the time-reversed simulation of viscous flows by the lattice Boltzmann method (LB). The theoretical derivation of the reversed LB from the Boltzmann equation is detailed, and the method implemented for weakly compressible flows using the D2Q9 scheme. The implementation of boundary conditions is also discussed. The accuracy and stability are illustrated by four test cases, namely the propagation of an acoustic wave in a medium at rest and in an uniform mean flow, the Taylor–Green vortex decay and the vortex pair–wall collision.  相似文献   

4.
Numerical instability may occur when simulating high Reynolds number flows by the lattice Boltzmann method (LBM). The multiple-relaxation-time (MRT) model of the LBM can improve the accuracy and stability, but is still subject to numerical instability when simulating flows with large single-grid Reynolds number (Reynolds number/grid number). The viscosity counteracting approach proposed recently is a method of enhancing the stability of the LBM. However, its effectiveness was only verified in the single-relaxation-time model of the LBM (SRT-LBM). This paper aims to propose the viscosity counteracting approach for the multiple-relaxation-time model (MRT-LBM) and analyze its numerical characteristics. The verification is conducted by simulating some benchmark cases: the two-dimensional (2D) lid-driven cavity flow, Poiseuille flow, Taylor-Green vortex flow and Couette flow, and three-dimensional (3D) rectangular jet. Qualitative and Quantitative comparisons show that the viscosity counteracting approach for the MRT-LBM has better accuracy and stability than that for the SRT-LBM.  相似文献   

5.
格子Boltzmann方法中的曲边界处理   总被引:4,自引:2,他引:2  
杜睿  施保昌 《计算物理》2006,23(4):405-411
研究了格子Boltzmann方法中实现曲边界条件的3种格式,对它们的精度和稳定性进行了分析和比较.通过二维Poiseuille流和等边三角域上空腔流的模拟,讨论了这3种格式的数值精度和稳定性.  相似文献   

6.
A numerical scheme is presented for accurate simulation of fluid flow using the lattice Boltzmann equation (LBE) on unstructured mesh. A finite volume approach is adopted to discretize the LBE on a cell-centered, arbitrary shaped, triangular tessellation. The formulation includes a formal, second order discretization using a Total Variation Diminishing (TVD) scheme for the terms representing advection of the distribution function in physical space, due to microscopic particle motion. The advantage of the LBE approach is exploited by implementing the scheme in a new computer code to run on a parallel computing system. Performance of the new formulation is systematically investigated by simulating four benchmark flows of increasing complexity, namely (1) flow in a plane channel, (2) unsteady Couette flow, (3) flow caused by a moving lid over a 2D square cavity and (4) flow over a circular cylinder. For each of these flows, the present scheme is validated with the results from Navier–Stokes computations as well as lattice Boltzmann simulations on regular mesh. It is shown that the scheme is robust and accurate for the different test problems studied.  相似文献   

7.
一种新的模拟渗流运动的数值方法   总被引:1,自引:0,他引:1       下载免费PDF全文
许友生 《物理学报》2003,52(3):626-629
根据格子Boltzmann方法及相关理论,建立了一个新的模拟渗流运动的数值模型,所得模型没有在边界上采取相应平均措施,同时还避免了一些非物理副产品的出现-实例计算数值结果与精确解符合较好,证明模型可靠- 关键词: 渗流 格子Boltzmann方法 数值模型  相似文献   

8.
The lattice Boltzmann method has recently gained popularity as a tool for simulating complex fluid flows. It uses discrete sets of velocity vectors, or lattices, to create a reduced model of the molecular dynamics of a continuum fluid. While several lattices are believed to behave isotropically, there are reports of qualitatively incorrect results. However, thus far, the reason as to why a lack of isotropy occurs is not known. Based on the hypothesis that lower order lattices may not display rotational invariance, this study tests the isotropy of the D3Q15, D3Q19 and D3Q27 lattices by performing simulations at intermediate Reynolds numbers (50–500) and low Knudsen number (<0.0005) in an axisymmetrical geometry with a nozzle leading to a throat followed by a sudden expansion. The symmetry properties of the results were examined. It was found that at Re ? 250 the D3Q15 and D3Q19 lattices produced different results depending on the plane of the lattice with which the flow was aligned. Lattice planes with fewer than six velocity vectors consistently produced results which were qualitatively different from the planes with six or more velocity vectors. These errors were not observed at Re = 50 or when a D3Q27 lattice was used. They appeared to be independent of grid density, collision operator and Ma. This suggests that the lattices which contain these planes are not fully isotropic and therefore do not properly replicate the behavior of a real fluid in this particular situation, notably downstream from the expansion. Predictions made using these models in more complex geometries may therefore be affected by the orientation of the lattice. When using LBM in CFD simulation (including validation) this study highlights the need for caution to ensure that the solution obtained is independent of the lattice orientation throughout the domain.  相似文献   

9.
刘飞飞  魏守水  魏长智  任晓飞 《物理学报》2015,64(15):154401-154401
双分布函数热晶格玻尔兹曼数值方法在微尺度热流动系统中得到广泛的应用. 本文基于晶格玻尔兹曼平衡分布函数低阶Hermite展开式, 创新性地提出了包含黏性热耗散和压缩功的耦合的双分布函数热晶格玻尔兹曼数值方法, 将能量场内温度的变化以动量源的形式引入晶格波尔兹曼动量演化方程, 实现了能量场与动量场之间的耦合. 研究了考虑黏性热耗散和压缩功的和不考虑的两种热自然对流模型, 重点分析了不同瑞利数和普朗特数下流场内的流动情况以及温度、速度和平均努赛尔数的变化趋势. 本文实验结果与文献结果一致, 验证了本文数值方法的可行性和准确性. 研究结果表明: 随着瑞利数和普朗特数的增大, 方腔内对流传热作用逐渐增强, 边界处形成明显的边界层; 考虑黏性热耗散和压缩功的模型对流作用相对增强, 黏性热耗散和压缩功对自然对流的影响在微尺度流动过程中不能忽略.  相似文献   

10.
格子Boltzmann亚格子模型的研究   总被引:2,自引:1,他引:1  
为了将格子Boltzmann法应用于大雷诺数流动的模拟,本文将Smagorinsky亚格子模型和LBGK模型相结合,并对该亚格子LBM模型进行了研究。利用该亚格子LBM模型,对二维顶盖驱动流进行了模拟,得到了若干大雷诺数下流线图和方腔中心线上无量纲速度分布。计算结果与基准解进行比较,两者相互吻合。  相似文献   

11.
In this paper we address the problem of the time evolution of a perturbation around a steady base flow with the use of the lattice Boltzmann method (LBM). This approach, named base flow lattice Boltzmann method, is of great interest in particular for aeroacoustic fields where the acoustic perturbation, on the one hand, is almost exclusively influenced by the large scale average structures of the underlying flow, and on the other hand, has a low effect on the large structures. The method is implemented for weakly compressible flows and the results of the base flow lattice Boltzmann are compared with the standard single relaxation time LBM. The boundary conditions for the base flow lattice Boltzmann method are discussed, as well as the implementation of outflow conditions for acoustic waves.  相似文献   

12.
In this paper, we propose a lattice Boltzmann BGK model for simulation of micro flows with heat transfer based on kinetic theory and the thermal lattice Boltzmann method (He et al., J. Comp. Phys. 146:282, 1998). The relaxation times are redefined in terms of the Knudsen number and a diffuse scattering boundary condition (DSBC) is adopted to consider the velocity slip and temperature jump at wall boundaries. To check validity and potential of the present model in modelling the micro flows, two two-dimensional micro flows including thermal Couette flow and thermal developing channel flow are simulated and numerical results obtained compare well with previous studies of the direct simulation Monte Carlo (DSMC), molecular dynamics (MD) approaches and the Maxwell theoretical analysis  相似文献   

13.
A lattice Boltzmann flux solver (LBFS) is presented in this work for simulation of incompressible viscous and inviscid flows. The new solver is based on Chapman-Enskog expansion analysis, which is the bridge to link Navier-Stokes (N-S) equations and lattice Boltzmann equation (LBE). The macroscopic differential equations are discretized by the finite volume method, where the flux at the cell interface is evaluated by local reconstruction of lattice Boltzmann solution from macroscopic flow variables at cell centers. The new solver removes the drawbacks of conventional lattice Boltzmann method such as limitation to uniform mesh, tie-up of mesh spacing and time interval, limitation to viscous flows. LBFS is validated by its application to simulate the viscous decaying vortex flow, the driven cavity flow, the viscous flow past a circular cylinder, and the inviscid flow past a circular cylinder. The obtained numerical results compare very well with available data in the literature, which show that LBFS has the second order of accuracy in space, and can be well applied to viscous and inviscid flow problems with non-uniform mesh and curved boundary.  相似文献   

14.
The thermodynamic of cavitation bubble collapsing is a complex fundamental issue for cavitation application and prevention. The pseudopotential and thermal multi-relaxation-time lattice Boltzmann method (MRT-LBM) is adopted to investigate the thermodynamic of collapsing cavitation bubble in this paper. The simulation results satisfy the maximum temperature equation of the bubble collapse, which derived from the Rayleigh-Plesset (R-P) equation. The validity of thermal MRT-LBM in simulating the collapse process of cavitation bubble is verified. It shows that the temperature evolution of vapor-liquid phase is well captured. Furthermore, the two-dimensional (2D) temperature, velocity and pressure field of the bubble near a solid wall are analyzed. The maximum temperature inside the bubble and wall temperature under different position offset parameters are discussed in details.  相似文献   

15.
It is shown how shear-thinning flow can be simulated without the need for numerical differentiation by following a lattice Boltzmann approach. The basic idea of is to combine the Cross model of viscosity with a 3D multiple relaxation time lattice Boltzmann method and to extract the required velocity derivatives from intrinsic quantities of the lattice Boltzmann scheme. Computational results are presented for a simple benchmark and for the simulation of liquid composite moulding.  相似文献   

16.
The recently proposed boundary condition-enforced immersed boundary-lattice Boltzmann method (IB-LBM) [14] is improved in this work to simulate three-dimensional incompressible viscous flows. In the conventional IB-LBM, the restoring force is pre-calculated, and the non-slip boundary condition is not enforced as compared to body-fitted solvers. As a result, there is a flow penetration to the solid boundary. This drawback was removed by the new version of IB-LBM [14], in which the restoring force is considered as unknown and is determined in such a way that the non-slip boundary condition is enforced. Since Eulerian points are also defined inside the solid boundary, the computational domain is usually regular and the Cartesian mesh is used. On the other hand, to well capture the boundary layer and in the meantime, to save the computational effort, we often use non-uniform mesh in IB-LBM applications. In our previous two-dimensional simulations [14], the Taylor series expansion and least squares-based lattice Boltzmann method (TLLBM) was used on the non-uniform Cartesian mesh to get the flow field. The final expression of TLLBM is an algebraic formulation with some weighting coefficients. These coefficients could be computed in advance and stored for the following computations. However, this way may become impractical for 3D cases as the memory requirement often exceeds the machine capacity. The other way is to calculate the coefficients at every time step. As a result, extra time is consumed significantly. To overcome this drawback, in this study, we propose a more efficient approach to solve lattice Boltzmann equation on the non-uniform Cartesian mesh. As compared to TLLBM, the proposed approach needs much less computational time and virtual storage. Its good accuracy and efficiency are well demonstrated by its application to simulate the 3D lid-driven cubic cavity flow. To valid the combination of proposed approach with the new version of IBM [14] for 3D flows with curved boundaries, the flows over a sphere and torus are simulated. The obtained numerical results compare very well with available data in the literature.  相似文献   

17.
为了对垂直转子轴式黏性泵内部流动规律进行研究,采用格子Boltzmann法(LBM)对该泵模型全流场进行了数值模拟。采用具有二阶精度的弯曲固壁边界条件和基于插值公式的移动固壁边界条件,对具有圆形、矩形及方形等3种不同截面形状转轴的模型泵内部定常与非定常流动进行了计算,得到了模型泵体出口剖面处x方向速度分量平均值。结果表明,具有圆形截面形状转轴的泵送效果较另两种截面形状的转轴为佳,计算所得的出口剖面处x方向速度分量平均值与文献中实验结果吻合良好。  相似文献   

18.
柴振华  施保昌  郑林 《中国物理》2006,15(8):1855-1863
By coupling the non-equilibrium extrapolation scheme for boundary condition with the multi-relaxation-time lattice Boltzmann method, this paper finds that the stability of the multi-relaxation-time model can be improved greatly, especially on simulating high Reynolds number (Re) flow. As a discovery, the super-stability analysed by Lallemand and Luo is verified and the complex structure of the cavity flow is also exhibited in our numerical simulation when Re is high enough. To the best knowledge of the authors, the maximum of Re which has been investigated by direct numerical simulation is only around 50,000 in the literature; however, this paper can readily extend the maximum to 1000,000 with the above combination.  相似文献   

19.
The lattice Boltzmann cellular automaton method has been successfully extended for analysis of fluid interactions with a deformable membrane or web. The hydrodynamic forces on the solid web are obtained through computation of the fluid flow stress at the moving boundary using the lattice Boltzmann method. Analysis of solid boundary deformation or vibration due to hydrodynamic force is based on Newtonian dynamics and a molecular dynamic type approach.  相似文献   

20.
Boundary conditions for lattice Boltzmann simulations   总被引:9,自引:0,他引:9  
A heuristic interpretation of no-slip boundary conditions for lattice Boltzmann and lattice gas simulations is developed. An improvement is suggested which consists of including the wall nodes in the collision operation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号