首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
H Sazdjian 《Annals of Physics》1981,136(1):136-189
We show within the Hamiltonian formalism the existence of classical relativistic mechanics of N scalar particles interacting at a distance which satisfies the requirements of Poincaré invariance, separability, world-line invariance and Einstein causality. The line of approach which is adopted here uses the methods of the theory of systems with constraints applied to manifestly covariant systems of particles. The study is limited to the case of scalar interactions remaining weak in the whole phase space and vanishing at large space-like separation distances of the particles. Poincaré invariance requires the inclusion of many-body, up to N-body, potentials. Separability requires the use of individual or two-body variables and the construction of the total interaction from basic two-body interactions. Position variables of the particles are constructed in terms of the canonical variables of the theory according to the world-line invariance condition and the subsidiary conditions of the non-relativistic limit and separability. Positivity constraints on the interaction masses squared of the particles ensure that the velocities of the latter remain always smaller than the velocity of light.  相似文献   

2.
Special relativity is based on the apparent contradiction between two postulates, namely, Galilean vs. c-invariance. We show that anomalies ensue by holding the former postulate alone. In order for Galilean invariance to be consistent, it must hold not only for bodies’ motions, but also for the signals and forces they exchange. If the latter ones do not obey the Galilean version of the Velocities Addition Law, invariance is violated. If, however, they do, causal anomalies, information loss and conservation laws’ violations are bound to occur. These anomalies are largely remedied by introducing waves and fields that disobey Galilean invariance. Therefore, from these inconsistencies within classical mechanics, electromagnetism could be predicted before experiment proved its existence. Special relativity, it might be argued, would then follow naturally, either as a resolution of the resulting conflict or as an extrapolation of the path between the theories. We conclude with a review of earlier attempts to base SR on a single postulate, and point out the originality of the present work.  相似文献   

3.
郑映鸿  陈童  王平  常哲 《物理学报》2007,56(11):6199-6203
对几何相位的伽利略变换性质结果表明:通常实验中所测量体系的几何相位的确是伽利略不变的.但一般量子体系的几何相位不具有伽利略不变性.还仔细考察了几何相位在伽利略boost作用下变化的物理起源.文章最后通过对假想实验的分析,进一步证明几何相位对参考系的依赖并不意味着相应物理可观测量的非伽利略协变性.  相似文献   

4.
The interplay of electron-electron interactions and spin-orbit coupling leads to a new contribution to the homogeneous optical conductivity of the electron liquid. The latter is known to be insensitive to many-body effects for a conventional electron system with parabolic dispersion. The parabolic spectrum has its origin in the Galilean invariance which is broken by spin-orbit coupling. This opens up a possibility for the optical conductivity to probe electron-electron interactions. We analyze the interplay of interactions and spin-orbit coupling and obtain optical conductivity beyond RPA.  相似文献   

5.
冉政 《中国物理 B》2009,18(6):2159-2167
The Galilean invariance and the induced thermo-hydrodynamics of the lattice Boltzmann Bhatnagar--Gross--Krook model are proposed together with their rigorous theoretical background. From the viewpoint of group invariance, recovering the Galilean invariance for the isothermal lattice Boltzmann Bhatnagar--Gross--Krook equation (LBGKE) induces a new natural thermal-dynamical system, which is compatible with the elementary statistical thermodynamics.  相似文献   

6.
We construct a low-energy effective Lagrangian describing zero temperature supersolids. Galilean invariance imposes strict constraints on the form of the effective Lagrangian. We identify a topological term in the Lagrangian that couples superfluid and crystalline modes. For small superfluid fractions, this interaction term is dominant in problems involving defects. As an illustration, we compute the differential cross section of scatterings of low-energy transverse elastic phonons by a superfluid vortex. The result is model independent.  相似文献   

7.
We show that in order for a U(1) gauge theory with a Fayet-Illiopoulos term to be consistently coupled to supergravity, preserving gauge invariance, the superpotential must be R invariant. A supersymmetric cosmological term and therefore an explicit mass-like term for the gravitino is forbidden by gauge invariance. This result severely constrains the possible models for non-gravitational interactions. We comment on possible mass term the gauginos induced by gravitational effects.  相似文献   

8.
The Galilean invariance of the Navier–Stokes equation is shown to be akin to a global gauge symmetry familiar from quantum field theory. This symmetry leads to a multiple counting of infinitely many inertial reference frames in the path integral approach to randomly stirred fluids. This problem is solved by fixing the gauge, i.e., singling out one reference frame. The gauge fixed theory has an underlying Becchi–Rouet–Stora (BRS) symmetry which leads to the Ward identity relating the exact inverse response and vertex functions. This identification of Galilean invariance as a gauge symmetry is explored in detail, for different gauge choices and by performing a rigorous examination of a discretized version of the theory. The Navier–Stokes equation is also invariant under arbitrary rectilinear frame accelerations, known as extended Galilean invariance (EGI). We gauge fix this extended symmetry and derive the generalized Ward identity that follows from the BRS invariance of the gauge-fixed theory. This new Ward identity reduces to the standard one in the limit of zero acceleration. This gauge-fixing approach unambiguously shows that Galilean invariance and EGI constrain only the zero mode of the vertex but none of the higher wavenumber modes.  相似文献   

9.
We illustrate a metric formulation of Galilean invariance by constructing wave equations with gauge fields. It consists of expressing nonrelativistic equations in a covariant form, but with a five-dimensional Riemannian manifold. First we use the tensorial expressions of electromagnetism to obtain the two Galilean limits of electromagnetism found previously by Le Bellac and Lévy-Leblond. Then we examine the nonrelativistic version of the linear Dirac wave equation. With an Abelian gauge field we find, in a weak field approximation, the Pauli equation as well as the spin—orbit interaction and a part reminiscent of the Darwin term. We also propose a generalized model involving the interaction of the Dirac field with a non-Abelian gauge field; the SU(2) Hamiltonian is given as an example.  相似文献   

10.
The extended third-order nonlinear Schrödinger equation and its solutions are studied on the basis of Galilean transformation and generalized Galilean invariance.Received: 15 September 2003, Published online: 12 July 2004PACS: 42.65.Tg Optical solitons; nonlinear guided waves - 52.35.Mw Nonlinear phenomena: waves, wave propagation, and other interactions (including parametric effects, mode coupling, ponderomotive effects, etc.)  相似文献   

11.
In this paper I argue that because we always observe nature through some spatial-temporal averaging operation we must interpret all observed statistical covariances of velocities and gradients as partial time derivatives. Systematic application of this result leads to a new interpretation of the radiation wave equation in whichc 2 measures the statistical variance of velocity. The Galilean invariance ofc 2 is then automatic. These results enable us to recast the Einstein-Minkowski space-time formalism within the framework of classical statistical mechanics. However, the Einstein work-energy relation and the constancy of the speed of light appear as equivalent approximations which become exact only in the adiabatic limit.  相似文献   

12.
Unitary representations of the Galilei group are studied in phase space, in order to describe classical and quantum systems. Conditions to write in general form the generator of time translation and Lagrangians in phase space are then established. In the classical case, Galilean invariance provides conditions for writing the Liouville operator and Lagrangian for non-linear systems. We analyze, as an example, a generalized kinetic equation where the collision term is local and non-linear. The quantum counter-part of such unitary representations are developed by using the Moyal (or star) product. Then a non-linear Schrödinger equation in phase space is derived and analyzed. In this case, an association with the Wigner formalism is established, which provides a physical interpretation for the formalism.  相似文献   

13.
Unlike the Lorentz transformation which replaces the Galilean transformation among inertial frames at high relative velocities, there seems to be no such a consensus in the case of coordinate transformation between inertial frames and uniformly rotating ones. There have been some attempts to generalize the Galilean rotational transformation to high rotational velocities. Here we introduce a modified version of one of these transformations proposed by Philip Franklin in 1922. The modified version is shown to resolve some of the drawbacks of the Franklin transformation, specially with respect to the corresponding spacetime metric in the rotating frame. This new transformation introduces non-inertial eccentric observers on a uniformly rotating disk and the corresponding metric in the rotating frame is shown to be consistent with the one obtained through Galilean rotational transformation for points close to the rotation axis. Employing the threading formulation of spacetime decomposition, spatial distances and time intervals in the spacetime metric of a rotating observer’s frame are also discussed.  相似文献   

14.
This study examines the invariance properties of the thermodynamic entropy production in its global (integral), local (differential), bilinear, and macroscopic formulations, including dimensional scaling, invariance to fixed displacements, rotations or reflections of the coordinates, time antisymmetry, Galilean invariance, and Lie point symmetry. The Lie invariance is shown to be the most general, encompassing the other invariances. In a shear-flow system involving fluid flow relative to a solid boundary at steady state, the Galilean invariance property is then shown to preference a unique pair of inertial frames of reference—here termed an entropic pair—respectively moving with the solid or the mean fluid flow. This challenges the Newtonian viewpoint that all inertial frames of reference are equivalent. Furthermore, the existence of a shear flow subsystem with an entropic pair different to that of the surrounding system, or a subsystem with one or more changing entropic pair(s), requires a source of negentropy—a power source scaled by an absolute temperature—to drive the subsystem. Through the analysis of different shear flow subsystems, we present a series of governing principles to describe their entropic pairing properties and sources of negentropy. These are unaffected by Galilean transformations, and so can be understood to “lie above” the Galilean inertial framework of Newtonian mechanics. The analyses provide a new perspective into the field of entropic mechanics, the study of the relative motions of objects with friction.  相似文献   

15.
Often considered as the last ‘encyclopedist’, Henri Poincaré died one hundred years ago. If he was a prominent man in 1900 French Society, his heritage is not so clearly recognised, particularly in France. Among his too often misunderstood works is his contribution to the theory of relativity, mainly because it is almost never presented within Poincaré's general approach to science, including his philosophical writings. Our aim is therefore to provide an historical account of the main steps (experimental as well as theoretical) which led Poincaré to contribute to the theory of relativity. Starting from the optical experiments which led to the inconsistency of the classical (Galilean) composition law for velocities to explain light propagation, we introduce the FitzGerald and Lorentz contraction which was viewed as the ‘sole hypothesis’ to explain the Michelson and Morley experiment. We then show that Poincaré's contribution starts with a discussion of the principles governing the mechanics and was built step by step up to express in all its generality the principle of relativity. Poincaré thus showed the invariance of the Maxwell equations under the Lorentz transformation. In doing so, he also discovered the right composition law for velocities. Poincaré's approach to philosophy is detailed to help the reader to understand what a theory meant to him.  相似文献   

16.
We discuss how to obtain the nonrelativistic limit of a self-consistent relativistic effective field theory for dynamic problems. It is shown that the standard v/c expansion yields Galilean invariance only to first order in v/c, whereas second order is required to obtain important contributions such as the spin-orbit force. We propose a modified procedure which is a mapping rather than a strict v/c expansion.  相似文献   

17.
When a quantummechanical wavepacket undergoes a series of Galilean boosts, the Schrödinger theory predicts the occurrence of a geometrical phase effect that is an example of Berry's phase (Sagnac's phase). In the present paper the conceptual consequences of this phenomenon are considered, in particular for the status of Galilean invariance in nonrelativistic quantum mechanics, and for the relation between that theory and classical physics.  相似文献   

18.
The existence of Dirac monopoles is shown to be incompatible with Galilean invariance. A discussion follows on the interpretation of monopoles physics in a Galilean approximation.  相似文献   

19.
We consider a polaron Hamiltonian in which not only the lattice and the electron-lattice interactions, but also the electron hopping term is affected by anharmonicity. We find that the one-electron ground states of this system are localized in a wide range of the parameter space. Furthermore, low energy excited states, generated either by additional momenta in the lattice sites or by appropriate initial electron conditions, lead to states constituted by a localized electron density and an associated lattice distortion, which move together through the system, at subsonic or supersonic velocities. Thus we investigate here the localized states above the ground state which correspond to moving electrons. We show that besides the stationary localized electron states (proper polaron states) there exist moving localized solectron states which can be easily excited. The evolution of these localized states suggests their potential as new carriers for fast electric charge transport.  相似文献   

20.
A method to develop physical theories of free particles in space-time with the Galilean metric is presented. The method is based on a Principle of Analyticity and a Principle of Relativity, and uses the Galilei group of the metric. The first principle requires that state functions describing the particles are analytic and the second principle demands that dynamical equations for these functions are Galilean invariant. It is shown that the method can be used to formally derive Schrödinger-like equations and to determine modifications of the Galilei group of the metric that are necessary to fullfil the requirements of analyticity and Galilean invariance. The obtained results shed a new light on the origin of Schrödinger’s equation of non-relativistic quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号