首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
We have investigated the electronic structure of the Yb/Si(1 1 1)-(3 × 2) surface using angle-resolved photoelectron spectroscopy. Five surface states have been identified in the gap of the bulk band projection. Among these five surface state, the dispersions of three of them agree well with those of the surface states of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. The dispersions of the two other surface states agree well with those observed on the Ca/Si(1 1 1)-(3 × 2) surface, whose basic structure is the same as that of monovalent atom adsorbed Si(1 1 1)-(3 × 1) surfaces. Taking these results into account, we conclude that the five surface states observed in the band gap originate from the orbitals of Si atoms that form a honeycomb-chain-channel structure.  相似文献   

2.
The Au/Ti(0 0 0 1) adsorption system was studied by low energy electron diffraction (LEED) and photoemission spectroscopy with synchrotron radiation after step-wise Au evaporation onto the Ti(0 0 0 1) surface. For adsorption of Au at 300 K, no additional superstructures were observed and the (1 × 1) pattern of the clean surface simply became diffuse. Annealing of gold layers more than 1 ML thick resulted in the formation of an ordered Au-Ti surface alloy. Depending on the temperature and annealing time, three surface reconstructions were observed by LEED: (√3 × √3) R30°, (2 × 2) and a one-dimensional incommensurate (√3 × √3) rectangular pattern. The Au 4f core level and valence band photoemission spectra provided evidence of a strong chemical interaction between gold and titanium. The data indicated formation of an intermetallic interface and associated valence orbital hybridization, together with diffusion of gold into the bulk. Au core-level shifts were found to be dependent on the surface alloy stoichiometry.  相似文献   

3.
Surface adsorbates induce strong local perturbations in the electronic structure and potentials in their surroundings. Consequently, charge transfer processes between projectiles and adsorbate-covered surfaces are strongly affected. The theoretical calculations and experiment measurements reported herein are focused on the H/Na/Cu(1 1 1) system. The electron dynamics at the Na/Cu(1 1 1) surface and the influence of Na adsorbates on the H-Cu(1 1 1) charge transfer are treated and discussed in detail. The ion fractions are mainly influenced by the ion exit trajectories. At low Na coverage, they exhibit a maximum near the 60° exit angle from surface. The calculations and experimental data are in good agreement.  相似文献   

4.
Homoepitaxial growth of Au on Bi-covered Au(1 1 1) was studied at room temperature using reflection high-energy electron diffraction (RHEED) and Auger electron spectroscopy (AES). From observations of RHEED it is found that the Au(1 1 1) (23 × 1) reconstruction structure changes to a (1 × 1) by about 0.16-0.5 ML deposition of Bi and to a (2√3 × 2√3)R30° by about 1.0 ML deposition of Bi, respectively. The surface morphology evolution by Bi deposition leads to a change of Au homoepitaxial growth behavior from layer-by-layer to step flow. This indicates that the surface diffusion distance of Au atoms on the Bi-precovered (1 × 1) and (2√3 × 2√3)R30° surfaces is longer than that on the Au(1 1 1) (23 × 1) clean surfaces. A strong surface segregation of Bi was found at top of surface. It is concluded that Bi atoms acted as an effective surfactant in the Au homoepitaxial growth by promoting Au intralayer mass transport.  相似文献   

5.
We have performed total-energy calculations to study theoretical scanning tunneling microscopy (STM) images of the Si(1 1 1)3 × 2 surfaces induced by the adsorption of alkaline-earth metals (AEMs). Previously, in a series of works on Ba/Si(1 1 1) system, we have found that the observed Si(1 1 1)3 × 1-Ba LEED phase indeed has a 3 × 2 periodicity with a Ba coverage of 1/6 ML and the HCC substrate structure. Based on results of the Ba case, we proposed that the HCC structure is also adopted for other AEM atoms, which was confirmed by our recent work. In this paper, we mainly report the STM simulations for different AEM systems to compare with existing experimental data. We discuss the difference in the detailed STM images for different AEM adsorbates. Especially, the difference in filled-state images between Mg and other AEM atoms is attributed to the strong Mg-Si interaction.  相似文献   

6.
Y. Fukuda  T. Kuroda  N. Sanada 《Surface science》2007,601(23):5320-5325
A soft X-ray appearance potential spectroscopy (SXAPS) apparatus with high sensitivity was built to measure non-derivative spectra. SXAPS spectra (non-derivative) of Ti 2p and O 1s for TiO2(1 1 0)-1 × 2 and (0 0 1)-1 × 1 surfaces have been measured using low incident currents (about 10 μA/cm2) and a photon counting mode. Density of empty states on Ti and O sites are deduced by self-deconvoluting the spectra. The self-deconvoluted SXAPS spectra are qualitatively similar to those measured by X-ray absorption spectroscopy (XAS). The Ti 2p3/2 spectrum shows two strong peaks which correspond to t2g and eg states. For the O 1s spectrum two strong peaks near the threshold are also found which can be ascribed to O 2pπ and O 2pσ states. These results suggest that the spectra almost obey the dipole selection rule, so-called the “approximate dipole selection rule”. The SXAPS spectra of Ti 2p and O 1s for the (1 1 0) and (0 0 1) surfaces resemble qualitatively, which is consistent with the XAS results. The spectra measured on the (1 1 0)-1 × 2 surface at an incident angle of 45° off normal to the surface and on the (1 1 0) surface sputtered by Ar ions indicate that SXAPS is very sensitive to the surface electronic states.  相似文献   

7.
The properties of the clean and unreconstructed 6H-SiC(0 0 0 1) and 6H-SiC surfaces were investigated by means of angle-resolved photoelectron spectroscopy (ARPES). These highly metastable surfaces were prepared by exposing hydrogen terminated surfaces to a high flux of synchrotron radiation. On both surfaces we find a band of surface states with 1 × 1 periodicity assigned to unsaturated Si and C dangling bonds located at 0.8 eV and 0.2 eV above the valence band maximum, respectively. Both states are located below the Fermi level. The dispersion of the surface bands amounts to 0.2 eV for the Si derived band and 0.7 eV for C derived band. It is suggested that the electronic properties of these surfaces are governed by strong correlation effects (Mott-Hubbard metal insulator transition). The results for the (0 0 0 1) surface are directly compared to Si-rich (√3 × √3)R30° reconstructed surface. Distinct differences in electronic structure of the (√3 × √3)R30° and 1 × 1 surfaces are observed.  相似文献   

8.
Strain-induced nanopatterns formed by the coadsorption of nitrogen and oxygen atoms are studied on the Cu(0 0 1) surface by scanning tunneling microscopy. A square grid pattern similar to that on the N-adsorbed surface appears, and consists of square c(2 × 2) areas with adsorbed N and O atoms when the total density of the adsorbates is around 30% of the Cu atom density on the clean surface. We evaluated the surface strain using a first-principles calculation for a coadsorbed surface and compared it with those on the clean and N-adsorbed surfaces. The strain on the coadsorbed surface is smaller than that of the N-adsorbed surface. The observed size of the square c(2 × 2) area on the coadsorbed surface is larger than that on the N-adsorbed surface with increasing the density of the adsorbates on average as expected by the strain reduction. On the other hand, there is no significant difference in the period of the grid pattern.  相似文献   

9.
We investigated the surface properties of InAs(1 1 1)A by low-temperature scanning tunneling microscopy (LT-STM) with atomic resolution and first-principles calculation. Very clear atom image was observed, showing that the surface reconstruction is an In-vacancy structure. We also observed two kinds of adsorbates on the surface. The first-principles calculations indicate that the In-vacancy structure is the most stable surface reconstruction under any experimental conditions, which is consistent with the LT-STM observation. Investigations of adsorption properties of an In atom, an As atom, and an As2 molecule by the first-principles calculations imply that the observed adsorbates are an In atom and an As2 molecule.  相似文献   

10.
M. Wen 《Surface science》2009,603(1):216-220
The atomic positions of the oxygen-induced c(2 × 2)-O, (3 × 1)-O and (4 × 1)-O surface structures on Nb(1 0 0) are determined by first-principles electronic structure calculations within the density functional theory comparing experimentally observed scanning tunneling microscopy (STM) images. STM images of these surfaces are calculated on the basis of the theory of Tersoff and Hamann. The theoretical and experimental STM images of the oxygen-chemisorbed c(2 × 2)-O structural model agree well. However, only the oxide-covered (3 × 1)-O and (4 × 1)-O structural models with two layers of NbO and contraction of the unit length along longitudinal 〈1 0 0〉 direction by 10% result in the theoretical STM images that agree with the experimental ones.  相似文献   

11.
Adsorption of H2 molecule on the Ti (0 0 0 1)-(2 × 1) surface was studied by density functional theory with generalized gradient approximation (GGA). The parallel and vertical absorption cases were investigated in detail by adsorption energy and electronic structure analysis, we obtained three stable configurations of FCC-FCC (the two H atoms adsorption on the two adjacent fcc sites of Ti (0 0 0 1) surface, respectively), HCP-HCP (the two H atoms adsorption on the two adjacent hcp sites of Ti (0 0 0 1) surface, respectively) and FCC-HCP (the one H atom adsorption on the fcc site and the other adsorption on the near hcp site) based on the six different parallel adsorption sites after the H2 molecule dissociates. However, all the end configurations of four vertical adsorption sites were unstable, H2 molecule was very easy to desorb from Ti surface. The H-H bond breaking and Ti-H bond forming result from the H2 molecule dissociation. H-H bond breaking length ranges from 1.9 Å to 2.3 Å for different adsorption configurations due to the strong Ti-H bond forming. The H2 dissociative approach and the end stable configurations formation in parallel adsorption processes are attributed to the quantum mechanics steering effects.  相似文献   

12.
M. Cangözen  Y. Güney 《Surface science》2006,600(18):3526-3530
We present results of ab initio theoretical investigations of the structural and dynamical properties of the Se:InP(1 1 0) and Te:InP(1 1 0) surfaces, by employing the plane wave pseudopotential method, the local density approximation of the density functional theory, and a linear response scheme. For both adsorbates we have used the so-called exchange geometry (the chalcogen atoms replacing P in the top two atomic layers). A detailed discussion is provided of the relaxed surface geometry and phonon dispersion curves along two principal symmetry directions. It is found that the adsorption of Se (or Te) atoms on InP(1 1 0) leads to phonon modes in the acoustic-optical gap region for bulk InP. The characteristic atomic displacement patterns of selected phonon modes on these surfaces have been compared and contrasted with those on the clean InP(1 1 0) surface.  相似文献   

13.
The adsorption of CO on Au(3 1 0) and Au(3 2 1) was studied using a combination of thermal desorption spectroscopy and high resolution core level photoemission spectroscopy. These vicinal Au surfaces both have 6-fold coordinated atoms at the step edges but have a different terrace structure. The CO adsorption behavior was found to be very similar for both surfaces. Three different desorption peaks due to chemisorbed CO were identified, which desorb around 100 K(α), 120 K(β) and 180 K(γ), respectively. The C1s and O1s spectra of the chemisorbed CO show a complex shake-up structure. Our experimental results indicate that CO only adsorbs on the step atoms. The different desorption peaks are explained by substrate-mediated long-range interactions between the adsorbates. Comparison with literature results shows that the CO adsorption energy is not only dependent on the coordination number of the Au atoms, but that the exact geometrical structure of the surface also plays a role.  相似文献   

14.
The electronic structure of the c(2 × 2)-Si/Cu(0 1 1) surface alloy has been investigated and compared to the structures seen in the three phases of the (√3 × √3)R30°Cu2Si/Cu(1 1 1) system, using LCAO-DFT. The weighted surface energy increase between the alloyed Cu(0 1 1) and Cu(1 1 1) surfaces is 126.7 meV/Si atom. This increase in energy for the (0 1 1) system when compared to the (1 1 1) system is assigned to the transition from a hexagonal to a rectangular local bonding environment for the Si ion cores, with the hexagonal environment being energetically more favorable. The Si 3s state is shown to interact covalently with the Cu 4s and 4p states whereas the Si 3p state, and to a lesser extent the Si 3d state, forms a mixture of covalent and metallic bonds with the Cu states. The Cu 4s and 4p states are shown to be altered by approximately the same amount by both the removal of Cu ion cores and the inclusion of Si ion cores during the alloying of the Cu(0 1 1) surface. However, the Cu 3d states in the surface and second layers of the alloy are shown to be more significantly altered during the alloying process by the removal of Cu ion cores from the surface layer rather than by the addition of Si ion cores. This is compared to the behavior of the Cu 3d states in the surface and second layers of the each phase of the (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloy and consequently the loss of Cu-Cu periodicity during alloying of the Cu(0 1 1) surface is conjectured as the driving force for changes to the Cu 3d states. The accompanying changes to the Cu 4s and 4p states in both the c(2 × 2)-Si/Cu(0 1 1) and (√3 × √3)R30°-Cu2Si/Cu(1 1 1) alloys are quantified and compared. The study concludes with a brief quantitative study of changes in the bond order of the Cu-Cu bonds during alloying of both Cu(0 1 1) and Cu(1 1 1) surfaces.  相似文献   

15.
The structure, stoichiometry and electronic properties of the GaAs(0 0 1)-(2 × 4)/c(2 × 8) surface treated by cycles of atomic hydrogen (AH) exposure and subsequent annealing in UHV were studied with the aim of preparing the Ga-rich surface at low temperatures. Low energy electron diffraction showed reproducible structural transformations in each cycle: AH adsorption at the (2 × 4)/c(2 × 8) surface led to the (1 × 4) structure at low AH exposure and to a (1 × 1) surface at higher AH exposure with subsequent restoration of the (2 × 4)/c(2 × 8) structure under annealing at 450 °C. The cycles of AH treatment preserved the atomic flatness of the GaAs(1 0 0) surface, keeping the mean roughness on to about 0.15 nm. The AH treatment cycles led to the oscillatory behavior of 3dAs/3dGa ratio with a gradual decrease to the value characteristic for the Ga-rich surface. Similar oscillatory variations were observed in the work function. The results are consistent with the loss of As from the surface as a result of the desorption of volatile compounds which are formed after reaction with H. The prepared Ga-rich GaAs(0 0 1) surface showed the stability of the (2 × 4)/c(2 × 8) structure up to the annealing temperature of 580 °C.  相似文献   

16.
Intermixing, growth, geometric and electronic structures of gold films grown on antiferromagnetic stacking body-centered-tetragonal manganese (0 0 1) films were studied by means of scanning tunneling microscopy/spectroscopy at room temperature in ultra-high vacuum. We found stable ordered c(2 × 2)-MnAu(0 0 1) alloy layers after depositing Au on pure Mn layers. Since at the fourth layer (5 × 23)-like Au reconstruction appears instead of the c(2 × 2) structure and local density of states peaks obtained on the c(2 × 2)-MnAu surface disappear, pure Au layers likely grow from the fourth layer.  相似文献   

17.
Y. Yun  D. Liao  E.I. Altman 《Surface science》2007,601(19):4636-4647
The effect of ferroelectric poling direction on the structure and electronic properties of the LiNbO3 (0 0 0 1) surface was characterized. Low energy and reflection high energy electron diffraction indicated that both the positively and negatively poled surfaces were (1 × 1) with no evidence of longer range periodic reconstructions. Low energy ion scattering spectra from both surfaces were dominated by scattering from oxygen atoms. X-ray and ultraviolet photoelectron spectra also showed little difference between the positively and negatively poled surfaces, with the exception of a high binding energy shoulder on the O 1s core level of the negative surface. Exposure of the surfaces to atomic hydrogen caused reduction of the surface Nb rather than an increase in intensity on the high binding energy side of the O 1s peak, indicating that the shoulder on the O 1s peak on the negative surface was not due to surface hydroxyl groups. Temperature programmed desorption measurements indicated that the nearly stoichiometric LiNbO3 samples were susceptible to loss of Li2O starting at temperatures as low as 500 K, independent of the poling direction. An adatom/vacancy model is proposed in which oxygen ad-anions accumulate on one side of the crystal while oxygen anion vacancies are created on the opposite surface. This model can explain the apparent oxygen termination of both surfaces and the observed (1 × 1) periodicity of the surfaces, and also effectively screens the thickness dependent electric field associated with the polar orientation of the crystal.  相似文献   

18.
We have employed the pseudopotential method and the density functional scheme to study the atomic geometry and electronic states of the GaSb(0 0 1) surface such as (1 × 3), c(2 × 6) and (4 × 3) reconstructions. It is found that both of (1 × 3) and c(2 × 6) reconstructions are characterised by metallic band structures, and thus violate the so-called electron counting rule, one of the main building principles of the stability of compound semiconductor surfaces. We establish that the stability of these reconstructions results from significant elastic deformation in the top atomic layers of the surface, a process which overcomes the penality incurred by the violation of the electron counting rule. The atomic geometry and electronic states for the two reconstructions are compared and contrasted with each other. The α and β phases of the (4 × 3) reconstruction also show large atomic relaxations but are semiconducting and obey the electron counting rule.  相似文献   

19.
Possible formation of stable Au atomic wire on the hydrogen terminated Si(0 0 1): 3×1 surface is investigated under the density functional formalism. The hydrogen terminated Si(0 0 1): 3×1 surface is patterned in two different ways by removing selective hydrogen atoms from the surface. The adsorption of Au on such surfaces is studied at different sub-monolayer coverages. At 4/9 monolayer (ML) coverage, zigzag continuous Au chains are found to be stable on the patterned hydrogen terminated Si(0 0 1): 3×1 surface. The reason for the stability of the wire structures at 4/9 ML coverage is explained. It is to be noted that beyond 4/9 ML coverage, the additional Au atoms may introduce clusters on the surface. The continuous atomic gold chains on the substrate may be useful for the fabrication of atomic scale devices.  相似文献   

20.
Perovskites of ABO3 type like strontium titanate (SrTiO3) are of great practical concern as materials for oxygen sensors operating at high temperatures. It is well known that the surface layer shows different properties compared to the bulk. Numerous studies exist for the SrTiO3(1 0 0) and (1 1 0) surfaces which have investigated the changes in the electronic structure and topography as a function of the preparation conditions. They have indicated a rather complex behaviour of the surface and the near surface region of SrTiO3 at elevated temperatures. Up to now, the behaviour of the SrTiO3(1 1 1) surfaces under thermal treatment is not sufficiently known. This contribution is intended to work out the relation between alteration of the surface topography with respect to the preparation conditions and the simultaneous changes of the electronic structure. We applied scanning tunneling microscopy (STM) to investigate the surface topography and, additionally, metastable impact electron spectroscopy (MIES) to study the surface electronic structure of reconstructed SrTiO3(1 1 1) surfaces. The crystals were heated up to 1000 °C under reducing and oxidizing conditions. Both preparation conditions cause strong changes of the surface topography and electronic structure. A microfaceting of the topmost layers is found.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号