首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
An analytical approach to investigating the stability of simply supported rectangular functionally graded plates under in-plane compressive, thermal, and combined loads is presented. The material properties are assumed to be temperature-dependent and graded in the thickness direction according to a simple power-law distribution in terms of volume fractions of constituents. The equilibrium and compatibility equations for the plates are derived by using the first-order shear deformation theory of plates, taking into account both the geometrical nonlinearity in the von Karman sense and initial geometrical imperfections. The resulting equations are solved by employing the Galerkin procedure to obtain expressions from which the postbuckling load–deflection curves can be traced by an iterative procedure. A stability analysis performed for geometrically midplane-symmetric FGM plates shows the effects of material and geometric parameters, in-plane boundary conditions, temperature-dependent material properties, and imperfections on the postbuckling behavior of the plates.  相似文献   

2.
The paper presents Chebyshev series based analytical solutions for the postbuckling response of the moderately thick laminated composite rectangular plates with and without elastic foundations. The plate is assumed to be subjected to in-plane mechanical, thermal and thermomechanical loadings. In-plane mechanical loading consists of uniaxial, biaxial, shear loadings and their combinations. The temperature induced loading is due to either uniform temperature or a linearly varying temperature across the thickness. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The thermal and mechanical properties of the composites are assumed to be temperature dependent. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of plate parameters and foundation parameters on buckling and postbuckling response of the plate are presented.  相似文献   

3.
Geometric modeling and numerical analysis of multi-directional FGM (Functionally Graded Material) plate, whose material properties grade continuously both in its thickness and in-plane directions, are increasingly required. In this work, postbuckling behavior of this type of plates with multiple cutouts is, for the first time, numerically investigated through the combination of NURBS-based IGA (IsoGeonetric Analysis) and FCM (Finite Cell Method). The nonlinear deformation of plate is determined by TSDT (Third-order Shear Deformation Theory) and von Kármán nonlinear assumptions without the requirement of SCFs (shear correction factors). Besides, the higher continuity advantage of NURBS basis functions can easily meet the C1-continuous requirement of the displacement field. The main contribution is introducing the FCM to deal with the influence of complex cutouts on the postbuckling characteristics. The geometric interfaces of the cutouts are approached and approximated by adaptive quadrature procedure in the distinguished cut elements. The advantage of this implementation is that the previously tricky process of representing the geometry of perforated plate with multiple NURBS patches can be eliminated, which naturally avoids the imposition of C1-continuity condition across the patch boundaries. The cylinder arc-length method combined with modified Newton–Raphson iteration algorithm, which takes into account of the initial geometric imperfections, is applied to implement geometrically nonlinear stability analysis and track the postbuckling paths. The effectiveness and reliability of the presented method are verified with available solutions of isotropic and conventional perfect FGM plates. Subsequently, a series of factors, including material volume fraction, length-to-thickness ratio, boundary condition, cutout size, etc., affecting the postbuckling responses of multi-directional perforated FGM plates are considered and investigated.  相似文献   

4.
The nonlinear buckling and postbuckling of a shear-deformable anisotropic laminated cylindrical panel of finite length is investigated based on a boundary-layer theory for buckling. The layers of the panel are assumed to be linearly elastic. The governing equations are based on Reddy’s higher-order shear deformation theory of shells and include the von Karman-type kinematic nonlinearity and extension/twist, extension/flexure, and flexure/twist couplings. The nonlinear prebuckling deformations and the initial geometric imperfections of the panel are both taken into account. The postbuckling behavior of the panel under axial compression is analyzed. A singular perturbation technique is employed to determine its buckling loads and postbuckling equilibrium paths. The numerical illustrations concern the postbuckling behavior of perfect and imperfect moderately thick anisotropic laminated cylindrical panels with different geometric parameters and stacking sequences. The new finding reveals that there arises a compressive stress along with an associate shear stress and twisting when a moderately thick anisotropic laminated cylindrical panel is subjected to axial compression.  相似文献   

5.
This paper studied compressive postbuckling under thermal environments and thermal postbuckling due to a uniform temperature rise for a shear deformable laminated plate with piezoelectric fiber reinforced composite (PFRC) actuators based on a higher order shear deformation plate theory that includes thermo-piezoelectric effects. The material properties are assumed to be temperature-dependent and the initial geometric imperfection of the plate is considered. The compressive and thermal postbuckling behaviors of perfect, imperfect, symmetric cross-ply and antisymmetric angle-ply laminated plates with fully covered or embedded PFRC actuators are conducted under different sets of thermal and electric loading conditions. The results reveal that, the applied voltage usually has a small effect on the postbuckling load–deflection relationship of the plate with PFRC actuators in the compressive buckling case, whereas the effect of applied voltage is more pronounced for the plate with PFRC actuators, compared to the results of the same plate with monolithic piezoelectric actuators.  相似文献   

6.
基于Reddy高阶剪切变形理论的Kármám-Donnell型非线性壳体方程,给出复合材料层合剪切圆柱曲板在侧压作用下的后屈曲分析。将壳体屈曲的边界层理论推广到复合材料层合剪切圆柱曲板受侧压作用的情况。相应的奇异摄动法,用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径。分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响。数值算例给出完善和非完善,中等厚度正交铺设层合圆柱曲板的后屈曲荷载-挠度曲线。讨论了横向剪切变形,曲板几何参数,铺层数,铺展方式和初始几何缺陷等各种参数变化的影响。  相似文献   

7.
《Applied Mathematical Modelling》2014,38(11-12):2848-2866
This paper presents an analytical investigation on the nonlinear response of thick functionally graded doubly curved shallow panels resting on elastic foundations and subjected to some conditions of mechanical, thermal, and thermomechanical loads. Material properties are assumed to be temperature independent, and graded in the thickness direction according to a simple power law distribution in terms of the volume fractions of constituents. The formulations are based on higher order shear deformation shell theory taking into account geometrical nonlinearity, initial geometrical imperfection and Pasternak type elastic foundation. By applying Galerkin method, explicit relations of load-deflection curves for simply supported curved panels are determined. Effects of material and geometrical properties, in-plane boundary restraint, foundation stiffness and imperfection on the buckling and postbuckling loading capacity of the panels are analyzed and discussed. The novelty of this study results from accounting for higher order transverse shear deformation and panel-foundation interaction in analyzing nonlinear stability of thick functionally graded cylindrical and spherical panels.  相似文献   

8.
本文基于Reddy高阶剪切变形板理论导出Karman型非线性大挠度方程并用于层合板热后屈曲分析.分析中计及板初始几何缺陷和热效应.给出了四边简支.对称正交铺设层合板在均匀或非均匀抛物型热分布作用下的后屈曲分析.采用摄动-Galerkin混合法确定板的热屈曲载荷与热后屈曲平衡路径.同时讨论了横向剪切变形,板长宽比,铺层数以及初始几何缺陷等各种参数变化的影响.  相似文献   

9.
中厚板的弹性屈曲和后屈曲   总被引:6,自引:2,他引:4  
本文采用Reissner假定考虑横向剪切变形的影响,导出弹性矩形板大挠度方程.本文讨论考虑横向剪切变形的矩形板的弹性屈曲和后屈曲.采用文[8]提供的摄动方法,给出了完善和非完善中厚板的后屈曲平衡路径,并与经典薄板理论结果进行了比较.  相似文献   

10.
基于Karman-Donnell型非线性壳体方程,给出带压电作动器混合层合圆柱曲板在机械荷载、电荷载和热荷载作用下的后屈曲分析.假定温度场为均匀分布,电场仅有沿板厚方向的分量Ez,且假定材料性能常数与温度和电场的变化无关。将壳体屈曲的边界层理论推广到混合层合圆柱曲板受复合荷载作用的情况.相应的奇异摄动法用于确定圆柱曲板的屈曲荷载和后屈曲平衡路径.分析中同时考虑非线性前屈曲变形和初始几何缺陷的影响.数值算例给出完善和非完善,含整体覆盖或内埋压电作动器正交铺设层合圆柱曲板的后屈曲平衡路径。讨论了温度变化、控制电压、铺层方式、面内边界条件和初始几何缺陷等各种参数变化的影响。  相似文献   

11.
The hp-version of the finite element method based on a triangular p-element is applied to free vibration of the orthotropic triangular and rectangular plates. The element's hierarchical shape functions, expressed in terms of shifted Legendre orthogonal polynomials, is developed for orthotropic plate analysis by taking into account shear deformation, rotary inertia, and other kinematics effects. Numerical results of frequency calculations are found for the free vibration of the orthotropic triangular and rectangular plates with the effect of the fiber orientation and plate boundary conditions. The results are very well compared to those presented in the literature.  相似文献   

12.
Based on the Von Karman plate theory, considering the effect of transverse shear deformation, and using the method of the dissociated three regions, the postbuckling governing equations for the axisymmetric laminated circular plates with elliptical delamination are derived. By using the orthogonal point collocation method, the governing equations, boundary conditions and continuity conditions are transformed into a group of nonlinear algebraically equation and the equations are solved with the alternative method. In the numerical examples, the effects of various elliptical in shape, delamination depth and different material properties on buckling and postbuckling of the laminated circular plates are discussed and the numerical results are compared with available data.  相似文献   

13.
An investigation is made on interlaminar delamination growth of composite laminated circular plates under in-plane loads and movable delamination boundary conditions. A four-dissociated-region model is developed on the basis of von-Karman plate theory. The model is geometrically nonlinear and the laminated circular plate considered is subjected to axisymmetrical delamination. The effects of transverse shear deformation and contact effect of the delamination on the laminated plates are taking into account in the development of the governing equations of the laminated circular pates with random axisymmetrical delamination. The formulas for describing the total energy release rate and its individual mode components along the delamination front are also derived with considerations of Griffith criterion for fracture. Based on the model established, the delamination growth is numerically studied; and the influences of the parameters such as delamination radii and depths, together with material properties of the plates on the energy release rate are analyzed in detail.  相似文献   

14.
中厚板热后屈曲分析   总被引:1,自引:0,他引:1  
依据Reissner-Mindlin板理论考虑转动惯量和横向剪切变形影响,本文给出中厚板在(1)均布和非均布(线性)热荷载作用下;(2)单向压缩和均布热荷载共同作用下的后屈曲分析。采用摄动法导出完善和非完善中厚板的热屈曲载荷和热后屈曲平衡路径,并与经典薄板理论结果进行了比较。  相似文献   

15.
Based on the von Kármán geometric nonlinear plate theory, the displacement⁃type geometric nonlinear governing equations for FGM sandwich circular plates under transverse nonlinear temperature field actions were derived. With the immovable clamped boundary condition, the analytical formula for dimensional critical buckling temperature differences of the system was obtained from the solution of the linear eigenvalue problem. Moreover, the 2⁃point boundary value problem of ordinary differential equations was solved with the shooting method. The effects of geometric parameters, constituent material properties, gradient indexes, temperature field parameters and layer⁃thickness ratios on the critical buckling temperature differences, the thermal postbuckling equilibrium paths, and the buckling equilibrium configurations of FGM sandwich circular plates, were investigated. The results show that, with the increases of the thickness⁃radius ratio, the relative thickness of the FGM layer and the gradient index, the FGM sandwich circular plate's critical buckling temperature difference will increase monotonically. Given a fixed radius and a fixed total thickness, the postbuckling deformation of the FGM sandwich circular plate will decrease significantly with the relative thickness of the FGM layer. © 2023 Editorial Office of Applied Mathematics and Mechanics. All rights reserved.  相似文献   

16.
The existence of solutions is proved for a full system of dynamic von Kármán equations expressing vibrations of geometrically nonlinear viscoelastic plate, the viscosity of which has the character of a short memory. The system models the behaviour of a bridge. The in-plane acceleration terms are taken into account. The boundary contact conditions for plane displacements and possibly the contact with the rigid support are considered.  相似文献   

17.
The paper deals with Chebyshev series based analytical solution for the nonlinear flexural response of the elastically supported moderately thick laminated composite rectangular plates subjected to hygro-thermo-mechanical loading. The mathematical formulation is based on higher order shear deformation theory (HSDT) and von-Karman nonlinear kinematics. The elastic foundation is modeled as shear deformable with cubic nonlinearity. The elastic and hygrothermal properties of the fiber reinforced composite material are considered to be dependent on temperature and moisture concentration and have been evaluated utilizing micromechanics model. The quadratic extrapolation technique is used for linearization and fast converging finite double Chebyshev series is used for spatial discretization of the governing nonlinear equations of equilibrium. The effects of Winkler and Pasternak foundation parameters, temperature and moisture concentration on nonlinear flexural response of the laminated composite rectangular plate with different lamination scheme and boundary conditions are presented.  相似文献   

18.
The existence of solutions is proved for a full system of dynamic von Kármán equations expressing vibrations of geometrically nonlinear viscoelastic plate, the viscosity of which has the character of a short memory. The system models the behaviour of a bridge. The in-plane acceleration terms are taken into account. The boundary contact conditions for plane displacements and possibly the contact with the rigid support are considered.  相似文献   

19.
The nonlinear buckling behavior of a 3D-braided composite cylindrical shell of finite length subjected to internal pressure in thermal environments is considered. According to a new micromacromechanical model, a 3D-braided composite may be treated as a cell system where the geometry of each cell strongly depends on its position in the cross section of the cylindrical shell. The material properties of the epoxy matrix are expressed as linear functions of temperature. The governing equations are based on Reddy’s higher-order shear deformation theory of shells with a von Karman–Donnell-type kinematic nonlinearity and include thermal effects. The singular perturbation technique is employed to determine the buckling pressure and the postbuckling equilibrium paths of the shell.  相似文献   

20.
Previous models of spinning disks have focused on modelling the disk as a spinning membrane. The effect of bending stiffness was then incorporated by adding the appropriate term to the previously derived spinning membrane equation. A pure spinning plate model does not exist in the literature. Furthermore, in both existing linear and nonlinear models of spinning disks, the in-plane inertia and rotary inertia of the disk have been ignored. This paper revisits the derivation of the equations of motion of a spinning plate. The derivation focuses on the use of Hamilton's principle with linear Kirchhoff and nonlinear von Karman strain expressions. In-plane and rotary inertias of the plate are automatically taken into account. The use of Hamilton's principle guarantees the correct derivation of the corresponding boundary conditions. The resulting equations and boundary conditions are discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号