首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
An analytical solution is presented for the 3D static response of variable stiffness non-uniform composite beams. Based on Euler-Bernoulli theory, a set of governing differential equations are obtained, in which four degrees of freedom are fully coupled. For the variable stiffness beam, the governing field equations have variable coefficients reflecting the stiffness variation along the beam. Using the direct integration technique, the general analytical solution is derived in the integral form and the closed-form expressions of the obtained solutions are presented employing a series expansion approximation. The series expansion representation enables the proposed approach to be applicable for variable stiffness composite beams with arbitrary span-wise variation of properties. As an alternative solution, the Chebyshev collocation method is applied to the proposed formulation to verify the results obtained from the analytical solution. A number of variable stiffness composite beams made by fibre steering with various boundary conditions and stacking sequences are considered as the test cases. The static response are presented based on the analytical solution and Chebyshev collocation method and excellent agreement is observed for all test cases. The proposed model presents a reliable and efficient approach for capturing the complicated behaviour of variable stiffness non-uniform composite beams.  相似文献   

2.
This paper presents a variational formulation that can be used for large deflection analysis of ends supported nanorod including the coupled effects of nonlocal elasticity and surface stress under a uniformly distributed load. The variational formulation involving the strain energy due to bending of nonlocal elasticity including the surface stress effect and virtual work done by a uniformly distributed load, is expressed in terms of the intrinsic coordinates. The Lagrange multiplier technique is applied to impose the boundary conditions which accomplished in the formulation. The validity of the variational approach is ensured by Euler's equation, which identical to the one derived by the force equilibrium consideration of an infinitesimal nanorod segment. The finite element method and Newton–Raphson iterative procedure based on the variational formulation are used to solve a system of nonlinear equations. Moreover, the very large deflection configurations of ends supported nanorod are highlighted in this study.  相似文献   

3.
This contribution is concerned with mixed finite element formulations for modeling piezoelectric beam and shell structures. Due to the electromechanical coupling, specific deformation modes are joined with electric field components. In bending dominated problems incompatible approximation functions of these fields cause incorrect results. These effects occur in standard finite element formulations, where interpolation functions of lowest order are used. A mixed variational approach is introduced to overcome these problems. The mixed formulation allows for a consistent approximation of the electromechanical coupled problem. It utilizes six independent fields and could be derived from a Hu-Washizu variational principle. Displacements, rotations and the electric potential are employed as nodal degrees of freedom. According to the Timoshenko theory (beam) and the Reissner-Mindlin theory (shell), the formulations account for constant transversal shear strains. To incorporate three dimensional constitutive relations all transversal components of the electric field and the strain field are enriched by mixed finite element interpolations. Thus the complete piezoelectric coupling is appropriately captured. The common assumption of vanishing transversal stress and dielectric displacement components is enforced in an integral sense. Some numerical examples will demonstrate the capability of the presented finite element formulation. (© 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

4.
A modified variational approach and the coupled homotopy perturbation method with variational formulation are exerted to obtain periodic solutions of a conservative nonlinear singular oscillator in plasma physics. The frequency–amplitude relations for the oscillator which the restoring force is inversely proportional to the dependent variable are achieved analytically. The approximate frequency obtained using the coupled method is more accurate than the modified variational approach and ones obtained using other approximate methods and the discrepancy between the approximate frequency using this coupled method and the exact one is lower than 0.31% for the whole range of values of oscillation amplitude. The coupled method provides a very good accuracy and is a promising technique to a lot of practical engineering and physical problems.  相似文献   

5.
The present work deals with the design of structure-preserving numerical methods in the field of nonlinear elastodynamics and structural dynamics. Structure-preserving schemes such as energy-momentum consistent (EMC) methods are known to exhibit superior numerical stability and robustness. Most of the previously developed schemes are relying on a displacement-based variational formulation of the underlying mechanical model. In contrast to that we present a mixed variational framework for the systematic design of EMC schemes. The newly proposed mixed approach accomodates high-performance mixed finite elements such as the shell element due to Wagner & Gruttmann [1] and the brick element due to Kasper & Taylor [2]. Accordingly, the proposed approach makes possible the structure-preserving extension to the dynamic regime of those high-performance elements. (© 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

6.
Conventional laser beam welding of aluminum alloys often leads to hot cracking. This is caused by a complex process where thermo-mechanical and metallurgical aspects are involved; cf. [3], [2]. A possibility to prevent hot crack initiation yields the multi-beam welding technique (cf. [2]), where additional laser beams are led parallelly besides the main laser beam. There by optimal positions, sizes, and powers of the additional laser beams play an important role otherwise hot cracking can even be enhanced. In [1], [4], resp., a mechanical 1D and thermal 2D model of hot cracking was derived. It provides the basis for different formulations of constrained nonlinear programming problems to identify the optimal parameters of the additional laser beams. In the present paper a comparison between these formulations and between two different optimizers for the so far best formulation are presented. (© 2005 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
The present works deals with the incorporation of both flexible beam and shell structures into the realm of flexible multibody dynamics. Geometrically exact beam formulations based on classical Simo-Reissner kinematics are suitable for modelling beam-type flexible components in the context of finite-deformation multibody dynamics. So geometrically exact shell formulations are based on Reissner-Mindlin kinematics. In [2], a flexible framework for dealing with flexible structural elements in a multibody context is described. A specific isoparametric finite element discretization of a shell formulation leads to semi-discrete equations of motions assuming the form of differential-algebraic equations (DAEs). A compatible isoparametric formulation of beams has already been developed in [1]. The uniform DAE framework makes possible the incorporation of alternative finite element formulations. In addition to that, various time-stepping schemes such as energy-momentum methods or variational integrators can be applied. (© 2010 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
The large-amplitude free vibration analysis of functionally graded beams is investigated by means of a finite element formulation. The Von-Karman type nonlinear strain–displacement relationships are employed where the ends of the beam are constrained to move axially. The effects of the transverse shear deformation and rotary inertia are included based upon the Timoshenko beam theory. The material properties are assumed to be graded in the thickness direction according to the power-law distribution. A statically exact beam element which devoid the shear locking effect with displacement fields based on the first order shear deformation theory is used to study the geometric nonlinear effects on the vibrational characteristics of functionally graded beams. The finite element method is employed to discretize the nonlinear governing equations, which are then solved by the direct numerical integration technique in order to obtain the nonlinear vibration frequencies of functionally graded beams with different boundary conditions. The influences of power-law exponent, vibration amplitude, beam geometrical parameters and end supports on the free vibration frequencies are studied. The present numerical results compare very well with the results available from the literature where possible. Some new results for the nonlinear natural frequencies are presented in both tabular and graphical forms which can be used for future references.  相似文献   

9.
Katrin Schulz  Sven Klinkel  Werner Wagner 《PAMM》2008,8(1):10337-10338
A geometrically nonlinear finite element formulation to analyze piezoelectric shell structures is presented. The formulation is based on the mixed field variational functional of Hu–Washizu. Within this variational principle the independent fields are displacements, electric potential, strains, electric field, stresses and dielectric displacements. The mixed formulation allows an interpolation of the strains and the electric field through the shell thickness, which is an essential advantage when using a three dimensional material law. It is remarked that no simplification regarding the constitutive relation is assumed. The normal zero stress condition and the normal zero dielectric displacement condition are enforced by the independent resultant stress and resultant dielectric displacement fields. The shell structure is modeled by a reference surface with a four node element. Each node possesses six mechanical degrees of freedom, three displacements and three rotations, and one electrical degree of freedom, which is the difference of the electric potential through the shell thickness. The developed mixed hybrid shell element fulfills the in–plane, bending and shear patch tests, which have been adopted for coupled field problems. A numerical investigation of a smart antenna demonstrates the applicability of the piezoelectric shell element under the consideration of geometrical nonlinearity. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
In this work a coupled two-scale sandwich shell model is proposed, where 4-node quadrilaterals are employed both on the global and the local scale. The coupled global-local boundary value problem is derived by means of a variational formulation and ensuing linearization. A numerical simulation is carried out for linear elastic and elasto-plastic material behavior with small strains. The resulting coupled nonlinear boundary value problem is solved simultaneously in a Newton iteration with incremental load steps. Various types of sandwich models are investigated in the form of uni- and bidirectionally stiffened structures. For the unidirectionally stiffened beam, an analytical reference solution is present by means of classical beam theory. In addition, the numerical results of all coupled calculations are compared to full scale shell models, showing very good agreement while significantly reducing the size of occurring system matrices. (© 2015 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

11.
According to the basic idea of classical yin-yang complementarity and modern dual-complementarity, in a simple and unified new way proposed by Luo, the unconventional Hamilton-type variational principles for geometrically nonlinear coupled thermoelastodynamics can be established systematically. The new unconventional Hamilton-type variational principle can fully characterize the initial-boundaty-value problem of this dynamics. In this paper, an important integral relation is given, which can be considered as the expression of the generalized principle of virtual work for geometrically nonlinear coupled thermodynamics. Based on this relation, it is possible not only to obtain the principle of virtual work in geometrically nonlinear coupled thermodynamics, but also to derive systematically the complementary functionals for eight-field, six-field, four-field and two-field unconventional Hamilton-type variational principles by the generalized Legendre transformations given in this paper. Furthermore, with this approach, the intrinsic relationship among various principles can be explained clearly.  相似文献   

12.

We combine a dual-mixed finite element method with a Dirichlet-to-Neumann mapping (derived by the boundary integral equation method) to study the solvability and Galerkin approximations of a class of exterior nonlinear transmission problems in the plane. As a model problem, we consider a nonlinear elliptic equation in divergence form coupled with the Laplace equation in an unbounded region of the plane. Our combined approach leads to what we call a dual-dual mixed variational formulation since the main operator involved has itself a dual-type structure. We establish existence and uniqueness of solution for the continuous and discrete formulations, and provide the corresponding error analysis by using Raviart-Thomas elements. The main tool of our analysis is given by a generalization of the usual Babuska-Brezzi theory to a class of nonlinear variational problems with constraints.

  相似文献   


13.
In the present work, the exact solutions for coupled analysis for bending and torsional case thin-walled functionally graded (FG) beams with non-symmetric single- and double-cells are presented for the first time. For this purpose, an accurate and efficient method is proposed to obtain the FG member stiffness matrix based on the series expansions of displacement components. Three types of material distributions are considered and the beam mechanical properties are graded along the wall thickness according to a power law of the volume fraction. The present beam model is on the basis of the Euler-Bernoulli beam theory and the Vlasov one for bending and torsional problems, respectively. The explicit expressions for displacement parameters are derived using the power series approach from the four coupled equilibrium equations. Finally, the FG member stiffness matrix is determined from the seven force-displacement relations. In order to show the accuracy and super convergence of the thin-walled FG beam element developed by this study, the numerical solutions are presented and compared with results obtained from the finite beam element based on the approximate interpolation polynomials and other available results. Especially, the effects of various structural parameters such as material distribution type, volume fraction index, boundary condition, and material ratio on the spatially coupled responses of FG box beams with non-symmetric single- and double-cells are parametrically investigated.  相似文献   

14.
In this paper we derive the field of displacements and strains for thin-walled open composite beams with composite laminated material including in their kinematics flexural and torsional shear deformations effects. The equilibrium equations are defined through the variational formulation and show that is possible to formulate Co finite elements taking into account the torsional shear deformation. Stress-strain relationships for the cross-section of thin-walled composite beams are obtained by extending first-order laminate (FSDT: first-order shear deformation) theory and using a «free stress resultant condition at the boundary». Three different one-dimensional finite elements with Co continuity are formulated for the study of thin-walled open composite beams and they are labelled as BSW (beam with shear and warping). The influence of the integration strategy in the BSW elements is evaluated via the shear-locking phenomenon and the rate of convergence for displacements and rotations. The stiffness matrix integration is compared using exact and reduced integration methods. Examples of pure torsion and flexo-torsion in a cantilever composite beam are performed. Numerical results are compared to those reported by other authors.  相似文献   

15.
A formulation is presented for steady-state dynamic responses of rotating bending-torsion coupled composite Timoshenko beams (CTBs) subjected to distributed and/or concentrated harmonic loadings. The separation of cross section's mass center from its shear center and the introduced coupled rigidity of composite material lead to the bending-torsion coupled vibration of the beams. Considering those two coupling factors and based on Hamilton's principle, three partial differential non-homogeneous governing equations of vibration with arbitrary boundary conditions are formulated in terms of the flexural translation, torsional rotation and angle rotation of cross section of the beams. The parameters for the damping, axial load, shear deformation, rotation speed, hub radius and so forth are incorporated into those equations of motion. Subsequently, the Green's function element method (GFEM) is developed to solve these equations in matrix form, and the analytical Green's functions of the beams are given in terms of piecewise functions. Using the superposition principle, the explicit expressions of dynamic responses of the beams under various harmonic loadings are obtained. The present solving procedure for Timoshenko beams can be degenerated to deal with for Rayleigh and Euler beams by specifying the values of shear rigidity and rotational inertia. Cantilevers with bending-torsion coupled vibration are given as examples to verify the present theory and to illustrate the use of the present formulation. The influences of rotation speed, bending-torsion couplings and damping on the natural frequencies and/or shape functions of the beams are performed. The steady-state responses of the beam subjected to external harmonic excitation are given through numerical simulations. Remarkably, the symmetric property of the Green's functions is maintained for rotating bending-torsion coupled CTBs, but there will be a slight deviation in the numerical calculations.  相似文献   

16.
17.
针对磁场环境中轴向运动导电导磁梁磁弹性耦合振动的理论建模问题进行研究.基于Timoshenko(铁木辛柯)梁理论并考虑几何非线性因素,给出轴向运动弹性梁在横向双向振动下的形变势能、动能计算式以及电磁力和机械力的虚功表达式.应用Hamilton(哈密顿)变分原理,推得磁场中轴向运动Timoshenko梁的非线性磁弹性耦合振动方程,并给出了简化形式的Euler-Bernoulli(欧拉 伯努利)梁磁弹性振动方程.根据电磁理论和相应的电磁本构关系,得到载流导电弹性梁所受电磁力的表达式,基于磁偶极子-电流环路模型给出铁磁弹性梁所受磁体力和磁体力偶的表述形式.通过算例,分析了轴向运动导电弹性梁的奇点分布及其稳定性问题.  相似文献   

18.
This paper addresses the frequency response of coupled bending-torsional beams carrying an arbitrary number of in-span viscoelastic dampers and attached masses. Using the elementary coupled bending-torsion theory, along with appropriate generalized functions to treat the discontinuities of the response variables at the application points of dampers/masses, exact analytical expressions are derived for the frequency response of the beam under harmonically-varying, arbitrarily-placed point/polynomial loads. On this basis, the exact 6 × 6 dynamic stiffness matrix and 6 × 1 load vector of a two-node coupled bending-torsional beam finite element, with any number of in-span dampers/masses and harmonic loads, are obtained in a closed analytical form. Finally, the modal frequency response functions of the beam are built by a complex modal analysis approach, upon deriving pertinent orthogonality conditions for the modes. In this context, the modal impulse response functions are also obtained for time-domain analysis under arbitrary loads.  相似文献   

19.
The behaviour of electromagnetic resonances in cavities is modelled by a Maxwell eigenvalue problem (EVP). In the present work, we rewrite the corresponding variational problem, as it arises with a view to the application of a finite element method, in a mixed formulation. For the modelling of realistic problems the integrals occurring in this mixed formulation often cannot be evaluated exactly. We take into account the error arising from numerical quadrature and show convergence to the approximations using exact integration. Finally, some numerical results are presented.  相似文献   

20.
In this paper, we introduce and study a new class of extended general nonlinear mixed variational inequalities and a new class of extended general resolvent equations and establish the equivalence between the extended general nonlinear mixed variational inequalities and implicit fixed point problems as well as the extended general resolvent equations. Then by using this equivalent formulation, we discuss the existence and uniqueness of solution of the problem of extended general nonlinear mixed variational inequalities. Applying the aforesaid equivalent alternative formulation and a nearly uniformly Lipschitzian mapping S, we construct some new resolvent iterative algorithms for finding an element of set of the fixed points of nearly uniformly Lipschitzian mapping S which is the unique solution of the problem of extended general nonlinear mixed variational inequalities. We study convergence analysis of the suggested iterative schemes under some suitable conditions. We also suggest and analyze a class of extended general resolvent dynamical systems associated with the extended general nonlinear mixed variational inequalities and show that the trajectory of the solution of the extended general resolvent dynamical system converges globally exponentially to the unique solution of the extended general nonlinear mixed variational inequalities. The results presented in this paper extend and improve some known results in the literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号