首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
A state of a quantum system can be regarded as classical (quantum) with respect to measurements of a set of canonical observables if and only if there exists (does not exist) a well defined, positive phase-space distribution, the so called Glauber-Sudarshan P representation. We derive a family of classicality criteria that requires that the averages of positive functions calculated using P representation must be positive. For polynomial functions, these criteria are related to Hilbert's 17th problem, and have physical meaning of generalized squeezing conditions; alternatively, they may be interpreted as nonclassicality witnesses. We show that every generic nonclassical state can be detected by a polynomial that is a sum-of-squares of other polynomials. We introduce a very natural hierarchy of states regarding their degree of quantumness, which we relate to the minimal degree of a sum-of-squares polynomial that detects them.  相似文献   

2.
Quantum correlation cost (QCC) characterizing how much quantum correlation is used in a weak-measurement process is presented based on the trace norm. It is shown that the QCC is related to the trace-norm-based quantum discord (TQD) by only a factor that is determined by the strength of the weak measurement, so it only catches partial quantumness of a quantum system compared with the TQD. We also find that the residual quantumness can be ‘extracted’ not only by the further von Neumann measurement, but also by a sequence of infinitesimal weak measurements. As an example, we demonstrate our outcomes by the Bell-diagonal state.  相似文献   

3.
The quantification of the quantumness of a quantum ensemble has theoretical and practical significance in quantum information theory. We propose herein a class of measures of the quantumness of quantum ensembles using the unitary similarity invariant norms of the commutators of the constituent density operators of an ensemble. Rigorous proof shows that they share desirable properties for a measure of quantumness, such as positivity, unitary invariance, concavity under probabilistic union, convexity under state decomposition, decreasing under coarse graining, and increasing under fine graining. Several specific examples illustrate the applications of these measures of quantumness in studying quantum information.  相似文献   

4.
5.
There are increasingly suggestions for computer simulations of quantum statistics which try to violate Bell type inequalities via classical, common cause correlations. The Clauser–Horne–Shimony–Holt (CHSH) inequality is very robust. However, we argue that with the Einstein–Podolsky–Rosen setup, the CHSH is inferior to the Bell inequality, although and because the latter must assume anti-correlation of entangled photon singlet states. We simulate how often quantum behavior violates both inequalities, depending on the number of photons. Violating Bell 99% of the time is argued to be an ideal benchmark. We present hidden variables that violate the Bell and CHSH inequalities with 50% probability, and ones which violate Bell 85% of the time when missing 13% anti-correlation. We discuss how to present the quantum correlations to a wide audience and conclude that, when defending against claims of hidden classicality, one should demand numerical simulations and insist on anti-correlation and the full amount of Bell violation.  相似文献   

6.
7.
We analyze seemingly contradictory claims in the literature about the role played by decoherence in ensuring classical behavior for the chaotically tumbling satellite Hyperion. We show that the controversy is resolved once the very different assumptions underlying these claims are recognized. In doing so, we emphasize the distinct notions of the problem of classicality in the ensemble interpretation of quantum mechanics and in decoherence-based approaches that are aimed at addressing the measurement problem.  相似文献   

8.
《Physics letters. A》2020,384(16):126333
We investigate the diagonal entropy(DE) of the ground state for quantum many-body systems, including the XY model and the Ising model with next nearest neighbor interactions. We focus on the DE of a subsystem of L continuous spins. We show that the DE in many-body systems, regardless of integrability, can be represented as a volume term plus a logarithmic correction and a constant offset. Quantum phase transition points can be explicitly identified by the three coefficients thereof. Besides, by combining entanglement entropy and the relative entropy of quantum coherence, as two celebrated representatives of quantumness, we simply obtain the DE, which naturally has the potential to reveal the information of quantumness. More importantly, the DE is concerning only the diagonal form of the ground state reduced density matrix, making it feasible to measure in real experiments, and therefore it has immediate applications in demonstrating quantum supremacy on state-of-the-art quantum simulators.  相似文献   

9.
We establish a connection between measurement-based quantum computation and the field of mathematical logic. We show that the computational power of an important class of quantum states called graph states, representing resources for measurement-based quantum computation, is reflected in the expressive power of (classical) formal logic languages defined on the underlying mathematical graphs. In particular, we show that for all graph state resources which can yield a computational speed-up with respect to classical computation, the underlying graphs—describing the quantum correlations of the states—are associated with undecidable logic theories. Here undecidability is to be interpreted in a sense similar to Gödel’s incompleteness results, meaning that there exist propositions, expressible in the above classical formal logic, which cannot be proven or disproven.  相似文献   

10.
Quantum sensing,using quantum properties of sensors,can enhance resolution,precision,and sensitivity of imaging,spectroscopy,and detection.An intriguing question is:Can the quantum nature(quantumness)of sensors and targets be exploited to enable schemes that are not possible for classical probes or classical targets?Here we show that measurement of the quantum correlations of a quantum target indeed allows for sensing schemes that have no classical counterparts.As a concrete example,in the case that the second-order classical correlation of a quantum target could be totally concealed by non-stationary classical noise,the higher-order quantum correlations can single out a quantum target from the classical noise background,regardless of the spectrum,statistics,or intensity of the noise.Hence a classical-noise-free sensing scheme is proposed.This finding suggests that the quantumness of sensors and targets is still to be explored to realize the full potential of quantum sensing.New opportunities include sensitivity beyond classical approaches,non-classical correlations as a new approach to quantum many-body physics,loophole-free tests of the quantum foundation,et cetera.  相似文献   

11.
We prove that the correlations present in a multipartite quantum state have an operational quantum character even if the state is unentangled, as long as it does not simply encode a multipartite classical probability distribution. Said quantumness is revealed by the new task of local broadcasting, i.e., of locally sharing preestablished correlations, which is feasible if and only if correlations are stricly classical. Our operational approach leads to natural definitions of measures for quantumness of correlations. It also reproduces the standard no-broadcasting theorem as a special case.  相似文献   

12.
We investigate the probability distribution of the quantum walk under coherence non-generating channels. We definea model called generalized classical walk with memory. Under certain conditions, generalized classical random walk withmemory can degrade into classical random walk and classical random walk with memory. Based on its various spreadingspeed, the model may be a useful tool for building algorithms. Furthermore, the model may be useful for measuring thequantumness of quantum walk. The probability distributions of quantum walks are generalized classical random walkswith memory under a class of coherence non-generating channels. Therefore, we can simulate classical random walkand classical random walk with memory by coherence non-generating channels. Also, we find that for another class ofcoherence non-generating channels, the probability distributions are influenced by the coherence in the initial state of thecoin. Nevertheless, the influence degrades as the number of steps increases. Our results could be helpful to explore therelationship between coherence and quantum walk.  相似文献   

13.
《Physics letters. A》2019,383(19):2241-2247
Recently, it has been shown that the quantum Fisher information via local observables and via local measurements (i.e., local quantum Fisher information (LQFI)) is a central concept in quantum estimation and quantum metrology and captures the quantumness of correlations in multi-component quantum system (Kim et al. (2018) [28]). This new discord-like measure is very similar to the quantum correlations measure called local quantum uncertainty (LQU). In the present study, we have revealed that LQU is bounded by LQFI in the phase estimation protocol. Also, a comparative study between these two quantum correlations quantifiers is addressed for the quantum Heisenberg XY model. Two distinct situations are considered. The first one concerns the anisotropic XY model and the second situation concerns isotropic XY model submitted to an external magnetic field. Our results confirm that LQFI reveals more quantum correlations than LQU.  相似文献   

14.
A normally ordered characteristic function (NOCF) of Bose operators is calculated for a number of discrete-variable entangled states (Greenberger-Horne-Zeilinger (GHZ) and Werner (W) qubit states and a cluster state). It is shown that such NOCFs contain visual information on two types of correlations: pseudoclassical and quantum correlations. The latter manifest themselves in the interference terms of the NOCFs and lead to quantum paradoxes, whereas the pseudoclassical correlations of photons and their cumulants satisfy the relations for classical random variables. Three- and four-qubit states are analyzed in detail. An implementation of an analog of Bernstein’s paradox on discrete quantum variables is discussed. A measure of quantumness of an entangled state is introduced that is not related to the entropy approach. It is established that the maximum of the degree of quantumness substantiates the numerical values of the coefficients in multiqubit vector states derived from intuitive considerations.  相似文献   

15.
We numerically investigate statistical ensembles for the occupations of eigenstates of an isolated quantum system emerging as a result of quantum quenches. The systems investigated are sparse random matrix Hamiltonians and disordered lattices. In the former case, the quench consists of sudden switching‐on the off‐diagonal elements of the Hamiltonian. In the latter case, it is sudden switching‐on of the hopping between adjacent lattice sites. The quench‐induced ensembles are compared with the so‐called “quantum micro‐canonical” (QMC) ensemble describing quantum superpositions with fixed energy expectation values. Our main finding is that quantum quenches with sparse random matrices having one special diagonal element lead to the condensation phenomenon predicted for the QMC ensemble. Away from the QMC condensation regime, the overall agreement with the QMC predictions is only qualitative for both random matrices and disordered lattices but with some cases of a very good quantitative agreement. In the case of disordered lattices, the QMC ensemble can be used to estimate the probability of finding a particle in a localized or delocalized eigenstate.  相似文献   

16.
Using the tomographic-probability representation of spin states, the quantum behavior of qudits is examined. For a general j-qudit state, we propose an explicit formula for quantumness witness whose negative average value is incompatible with classical statistical model. The probability representations of quantum and classical (2j + 1)-level systems are compared within the framework of quantumness tests. In view of the Jordan–Schwinger map, the method is extended for checking the quantumness of two-mode light states.  相似文献   

17.
Quantum teleportation is an interesting feature of quantum mechanics. Entanglement is used as a link between two remote locations to transfer a quantum state without physically sending it – a process that cannot be realized utilizing merely classical tools. Furthermore it has become evident that teleportation is also an important element of future quantum networks and it can be an ingredient for quantum computation. This article reports for the first time the teleportation from light to atoms. In the experiment discussed, the quantum state of a light beam is transferred to an atomic ensemble. The key element of light‐atom entanglement created via a dispersive interaction lays the foundation for the protocol.  相似文献   

18.
In this paper we present an approach to quantum mechanical canonical transformations. Our main result is that time-dependent quantum canonical transformations can always be cast in the form of squeezing operators. We revise the main properties of these operators in regard to its Lie group properties, how two of them can be combined to yield another operator of the same class and how can also be decomposed and fragmented. In the second part of the paper we show how this procedure works extremely well for the time-dependent quantum harmonic oscillator. The issue of the systematic construction of quantum canonical transformations is also discussed along the lines of Dirac, Wigner, and Schwinger ideas and to the more recent work by Lee. The main conclusion is that the classical phase space transformation can be maintained in the operator formalism but the construction of the quantum canonical transformation is not clearly related to the classical generating function of a classical canonical transformation. We hereby propose the much more efficient method given by the squeezing operators. This method has also been proved to be very useful, by one of the authors, in the framework of the dynamical symmetries (Cerveró, J. M. (1999). International Journal of Theoretical Physics 38, 2095–2109).  相似文献   

19.
《Physics letters. A》2020,384(25):126601
We investigate the quantum thermodynamical properties of localised relativistic quantum fields, and how they can be used as quantum thermal machines. We study the efficiency and power of energy transfer between the classical gravitational degrees of freedom, such as the energy input due to the motion of boundaries or an impinging gravitational wave, and the excitations of a confined quantum field. We find that the efficiency of energy transfer depends dramatically on the input initial state of the system. Furthermore, we investigate the ability of the system to extract energy from a gravitational wave and store it in a battery. This process is inefficient in optical cavities but is significantly enhanced when employing trapped Bose Einstein condensates. We also employ standard fluctuation results to obtain the work probability distribution, which allows us to understand how the efficiency is related to the dissipation of work. Finally, we apply our techniques to a setup where an impinging gravitational wave excites the phononic modes of a Bose Einstein condensate. We find that, in this case, the percentage of energy transferred to the phonons approaches unity after a suitable amount of time. These results give a quantitative insight into the thermodynamic behaviour of relativistic quantum fields confined in cavities.  相似文献   

20.
We describe both quantum particles and classical particles in terms of a classical statistical ensemble, with a probability distribution in phase space. By use of a wave function in phase space both can be treated in the same quantum formalism. Quantum particles are characterized by a specific choice of observables and time evolution of the probability density. Then interference and tunneling are found within classical statistics. Zwitters are (effective) one-particle states for which the time evolution interpolates between quantum and classical particles. Experimental bounds on a small parameter can test quantum mechanics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号