首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
An investigation is reported of the thermal buckling and postbuckling of axially compressed double-walled carbon nanotubes (CNTs) subjected to a uniform temperature rise. The double-walled carbon nanotube is modeled as a nonlocal shear deformable cylindrical shell, which contains small-scale effects and van der Waals interaction forces. The governing equations are based on higher order shear deformation shell theory with a von Kármán–Donnell-type of kinematic nonlinearity and include thermal effects. Temperature-dependent material properties, which come from molecular dynamics (MD) simulations, and an initial point defect, which is simulated as a dimple on the tube wall, are both taken into account. The small-scale parameter, e 0 a, is estimated by matching the buckling temperature of CNTs observed from the MD simulation results with the numerical results obtained from the nonlocal shear deformable shell model. The numerical illustrations concern the thermal postbuckling response of perfect and imperfect, single- and double-walled CNTs with different values of compressive load ratio. The results show that buckling temperature and postbuckling behavior of nanotubes are very sensitive to the small-scale parameter. The results reveal that temperature-dependent material properties have a significant effect on the thermal postbuckling behavior of both single- and double-walled CNTs.  相似文献   

2.
In this Letter, the thermal buckling properties of carbon nanotube with small scale effects are studied. Based on the nonlocal continuum theory and the Timoshenko beam model, the governing equation is derived and the nondimensional critical buckling temperature is presented. The influences of the scale coefficients, the ratio of the length to the diameter, the transverse shear deformation and rotary inertia are discussed. It can be observed that the small scale effects are significant and should be considered for thermal analysis of carbon nanotube. The nondimensional critical buckling temperature becomes higher with the ratio of length to diameter increasing. Furthermore, for smaller ratios of the length to the diameter and higher mode numbers, the transverse shear deformation and rotary inertia have remarkable influences on the thermal buckling behaviors.  相似文献   

3.
Eringen's nonlocality is incorporated into the shell theory to include the small-scale effects on the axial buckling of single-walled carbon nanotubes (SWCNTs) with arbitrary boundary conditions. To this end, the Rayleigh-Ritz solution technique is implemented in conjunction with the set of beam functions as modal displacement functions. Then, molecular dynamics simulations are employed to obtain the critical buckling loads of armchair and zigzag SWCNTs, the results of which are matched with those of nonlocal shell model to extract the appropriate values of nonlocal parameter. It is found that in contrast to the chirality, boundary conditions have a considerable influence on the proper values of nonlocal parameter.  相似文献   

4.
The vibration and instability of a single-walled carbon nanotube (SWCNT) under a general magnetic field are of particular interest to researchers. Using nonlocal Rayleigh beam theory and Maxwell’s equations, the dimensionless governing equations pertinent to the free vibration of a SWCNT due to a general magnetic field were derived. The effects of the longitudinal and transverse magnetic fields on the longitudinal and flexural frequencies as well as their corresponding phase velocities were addressed and are discussed below. The critical transverse magnetic field (CTMF) associated with the lateral buckling of the SWCNT was obtained. The obtained results reveal that the CTMF increases with the longitudinally induced magnetic field. Further, its value decreases as the effect of the small-scale parameter increases.  相似文献   

5.
The magnetic properties of carbon nanotubes and their mechanical behaviour in a magnetic field have attracted considerable attention among the scientific and engineering communities. This paper reports an analytical approach to study the effect of a longitudinal magnetic field on the transverse vibration of a magnetically sensitive double-walled carbon nanotube (DWCNT). The study is based on nonlocal elasticity theory. Equivalent analytical nonlocal double-beam theory is utilised. Governing equations for nonlocal transverse vibration of the DWCNT under a longitudinal magnetic field are derived considering the Lorentz magnetic force obtained from Maxwell's relation. Numerical results from the model show that the longitudinal magnetic field increases the natural frequencies of the DWCNT. Both synchronous and asynchronous vibration phases of the tubes are studied in detail. Synchronous vibration phases of DWCNT are more affected by nonlocal effects than asynchronous vibration phases. The effects of a longitudinal magnetic field on higher natural frequencies are also presented. Vibration response of DWCNT with outer-wall stationary and single-walled carbon nanotube under the effect of longitudinal magnetic field are also discussed in the paper.  相似文献   

6.
This Letter aims at the investigation of free-vibration properties of nanocones based on a nonlocal continuum shell model. A novel approach is used for derivation of the governing equations of motion and the Galerkin technique is used to obtain the natural frequencies of vibrations. The effects of small-scale and geometrical parameters of the nanocone on the natural frequencies are studied and some conclusions are drawn.  相似文献   

7.
L.L. Zhang  X.Q. Fang  G.Q. Nie 《哲学杂志》2013,93(18):2009-2020
Within the framework of nonlocal elasticity, the surface layer model is proposed to investigate the wave propagation characteristics in a single-layered nanoplate. The general solutions of nonlocal governing equations are expressed using partial wave technique and the nonclassical boundary conditions are derived. The dispersion relation with the effects of surface and nonlocal small-scale is obtained, and the size-dependent dispersion behaviour is demonstrated. The impacts of surface elasticity, residual surface stress and nonlocal parameter on the dispersion curves of the lowest-order two modes are illustrated. Numerical examples reveal that both the surface effect and nonlocal small-scale effect can obviously decrease the magnitude of phase velocity, and the thinner nanoplate corresponds to the smaller wave velocity and the narrower frequency bandwidth.  相似文献   

8.
We present the experimental observation of scalar multipole solitons in highly nonlocal nonlinear media, including dipole, tripole, quadrupole, and necklace-type solitons, organized as arrays of out-of-phase bright spots. These complex solitons are metastable, but with a large parameters range where the instability is weak, permitting their experimental observation.  相似文献   

9.
《Physics letters. A》2014,378(7-8):650-654
In this Letter, the buckling and vibration behavior of nonlocal nanowires by incorporating surface elasticity is investigated. A modified core–shell model is developed to depict the size effect of Youngʼs modulus and validated by the reported experimental data. Our results show that the buckling load and natural frequency of nanowires increase when the effect of surface layer thickness is taken into account. Moreover, as the diameter of nanowires is smaller than 50 nm, the influence of surface layer thickness becomes obvious. This work can be helpful in characterizing and predicting the buckling and vibration behavior of NWs.  相似文献   

10.
S.C. Pradhan 《Physics letters. A》2009,373(45):4182-4188
Higher order shear deformation theory (HSDT) is reformulated using the nonlocal differential constitutive relations of Eringen. The equations of motion of the nonlocal theories are derived. The developed equations of motion have been applied to study buckling characteristics of nanoplates such as graphene sheets. Navier's approach has been used to solve the governing equations for all edges simply supported boundary conditions. Analytical solutions for critical buckling loads of the graphene sheets are presented. Nonlocal elasticity theories are employed to bring out the small scale effect on the critical buckling load of graphene sheets. Effects of (i) nonlocal parameter, (ii) length, (iii) thickness of the graphene sheets and (iv) higher order shear deformation theory on the critical buckling load have been investigated. The theoretical development as well as numerical solutions presented herein should serve as reference for nonlocal theories as applied to the stability analysis of nanoplates and nanoshells.  相似文献   

11.
In this article, the buckling behavior of nanoscale circular plates under uniform radial compression is studied. Small-scale effect is taken into consideration. Using nonlocal elasticity theory the governing equations are derived for the circular single-layered graphene sheets (SLGS). Explicit expressions for the buckling loads are obtained for clamped and simply supported boundary conditions. It is shown that nonlocal effects play an important role in the buckling of circular nanoplates. The effects of the small scale on the buckling loads considering various parameters such as the radius of the plate and mode numbers are investigated.  相似文献   

12.
S Chakraverty  Laxmi Behera 《中国物理 B》2017,26(7):74602-074602
We present the application of differential quadrature(DQ) method for the buckling analysis of nanobeams with exponentially varying stiffness based on four different beam theories of Euler-Bernoulli, Timoshenko, Reddy, and Levison.The formulation is based on the nonlocal elasticity theory of Eringen. New results are presented for the guided and simply supported guided boundary conditions. Numerical results are obtained to investigate the effects of the nonlocal parameter,length-to-height ratio, boundary condition, and nonuniform parameter on the critical buckling load parameter. It is observed that the critical buckling load decreases with increase in the nonlocal parameter while the critical buckling load parameter increases with increase in the length-to-height ratio.  相似文献   

13.
We explore manifestations of electron-phonon coupling on the electron spectral function for two phonon modes in the cuprates exhibiting strong renormalizations with temperature and doping. Applying simple symmetry considerations and kinematic constraints, we find that the out-of-plane, out-of-phase O buckling mode (B(1g)) involves small momentum transfers and couples strongly to electronic states near the antinode while the in-plane Cu-O breathing modes involve large momentum transfers and couples strongly to nodal electronic states. Band renormalization effects are found to be strongest in the superconducting state near the antinode, in full agreement with angle-resolved photoemission spectroscopy data.  相似文献   

14.
This paper investigates active vibration suppression of a single-walled carbon nanotube (SWCNT) under the action of a moving harmonic load using Eringen’s nonlocal elasticity theory. The SWCNT is modeled according to the nonlocal Euler–Bernoulli beam theory. A Dirac-delta function is used to describe the position of the moving load along the SWCNT. Next, a linear classical optimal control algorithm with displacement-velocity feedback is used to suppress vibration in the SWCNT with control forces acting as actuators. The effects of a small-scale parameter, slenderness ratio, moving load velocity, and the excitation frequency of a moving load on the dynamic deflection of the SWCNT are examined. Finally, the ability of the control algorithm to suppress the response of the SWCNT under the effects of a moving load with a number of controlled modes and control forces is surveyed.  相似文献   

15.
Radial buckling stresses of carbon nanotubes (CNTs) need to be studied in high-pressure resonance Raman scattering spectrum. In this work, the closed-form expression of the critical buckling stress of multi-walled carbon nanotubes (MWCNTs) under hydrostatic pressure is derived that can be conveniently employed. Using the derived formulae, the critical buckling stresses of single-walled carbon nanotubes and double-walled carbon nanotubes with different diameters are calculated. The results are in good agreement with other reported literatures. In addition, the critical buckling stresses of each layer of a quintuple-walled CNT in different buckling modes are predicted, showing that the buckling instability can occur not only in the outermost rolled layer, but also in other rolled layer of MWCNTs by considering different diameters and buckling modes.  相似文献   

16.
Asynchronously tuned elementary cellular automata (AT-ECA) are described with respect to the relationship between active and passive updating, and that spells out the relationship between synchronous and asynchronous updating. Mutual tuning between synchronous and asynchronous updating can be interpreted as the model for dissipative structure, and that can reveal the critical property in the phase transition from order to chaos. Since asynchronous tuning easily makes behavior at the edge of chaos, the property of AT-ECA is called the unfolded edge of chaos. The computational power of AT-ECA is evaluated by the quantitative measure of computational universality and efficiency. It shows that the computational efficiency of AT-ECA is much higher than that of synchronous ECA and asynchronous ECA.  相似文献   

17.
The nonlocal effect on the spontaneous emission of a silver cuboid dimer is investigated using a local analog model. Magnetic as well as electric dipole excitations are introduced to excite different gap modes. The nonlocal response of electric and magnetic modes on various parameters of gap(width and refractive index) are investigated. Unidirectional radiation is achieved by the interaction between electric and magnetic modes in both local and nonlocal models. Compared to local simulations, the resonant wavelength is blue shifted and the spontaneous emission enhancement is weakened in the nonlocal model. The relative shifts of the resonant wavelengths get larger in smaller gaps with a higher refractive index.  相似文献   

18.
19.
《Physics letters. A》2006,349(5):370-376
A nonlocal multiple-shell model is developed for the elastic buckling of multi-walled carbon nanotubes under uniform external radial pressure on the basis of theory of nonlocal elasticity. The effect of small length scale is incorporated in the formulation. An explicit expression is derived for the critical buckling pressure for a double-walled carbon nanotube. The influence of the small length scale on the buckling pressure is examined. It is concluded that the critical buckling pressure for a carbon nanotube could be overestimated by the classic (local) shell model due to ignoring the effect of small length scale.  相似文献   

20.
The possible usage of nanoplates in transporting of nanovehicles encouraged the author to propose some nonlocal plate models in the companion paper where the nanovehicle (i.e., moving nanoparticle) was modeled by a moving point load by considering its friction with the upper surface of the nanoplate. In this paper, a comprehensive parametric study is carried out to study the effects of length to thickness ratio of the nanoplate, small-scale parameter, and velocity (or angular velocity) of the moving nanoparticle on dynamic response of nonlocal Kirchhoff, Mindlin, and higher-order plates subjected to a moving nanoparticle. Herein, dynamic response of the nanoplate covers both time histories and dynamic amplitude factors of the in- and out-of-plane displacements. The capabilities of various nonlocal plate models in predicting the displacement field caused by friction and mass weight of the moving nanoparticle are then explored through various numerical analyses for two cases: (i) the moving nanoparticle moves along a diagonal of the nanoplate; (ii) the moving nanoparticle orbits on an ellipse path whose center is coincident with the nanoplate's center. The obtained results indicate that due to the incorporation of small-scale effect into shear strain energy of the nanoplate, an appropriate nonlocal plate model should be used. The results show that the choice of the nanoplate model to use relies on the small-scale parameter, geometrical properties of the nanoplate, and velocity of the moving nanoparticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号