首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
1H, 13C and 15N NMR measurements (1D and 2D including 1H--15N gs-HMBC) have been carried out on 3-amino-1, 2,4-benzotriazine and a series of N-oxides and complete assignments established. N-Oxidation at any position resulted in large upfield shifts of the corresponding N-1 and N-2 resonances and downfield shifts for N-4 with the exception of the 3-amino-1,2,4-benzotriazine 1-oxide in which a small upfield shift of N-4 was observed. Density functional GIAO calculations of the 15N and 13C chemical shifts [B3LYP/6-31G(d)//B3LYP/6-311+G(2d,p)] gave good agreement with experimental values confirming the assignments. The combination of 13C and 15N NMR provides an unambiguous method for assigning the 1H and 13C resonances of N-oxides of 1,2,4-benzotriazines.  相似文献   

2.
Abstract

Reactions of the salts K2SN2 and K[(NSN)R] (R = ′Bu, SiMe3 and P′Bu2) with organoelement chlorides R′R′ěl have been used to prepare four series of model sulfur diimides: R′R″E(NSN)ER″R′, ′Bu(NSN)ER″R′, Me3Si(NSN)E″R′ and tBu2P(NSN)ER″R′, respectively (E = C, Si, Ge, Sn; R′ and R″ = alkyl or aryl group). All compounds have been characterized by ′H and 13C NMR and—if possible—by 31P, 29Si and 119Sn NMR spectroscopy. The configuration (Z or E) of the substituents R and E″R′ has been assigned in several cases using tBu(NSN)tBu (1) as a reference. The E,Z assignment of 1H, 13C and 15N nuclei in 1 is based on selectively 1H-decoupled refocused INEPT 15N NMR and two-dimensional (2D) 13C/1H heteronuclear shift correlations. The sulfur diimides under study are in general fluxional in solution.  相似文献   

3.
In situ 1H nuclear magnetic resonance spectroscopy was used to investigate the processes that occur during the synthesis of 1,3,6,8-tetraazatricyclo[4.3.1.13,8]undecane (TATU). NMR analysis showed a reaction mixture containing more than one compound. The production of these intermediates and collateral products was rationally supported by a careful 1H NMR monitoring study. We characterized 1,3,5-triazabicyclo[3.2.1]octane (TABO, 4) and 3-(2-aminoethyl)-1,3,5-triazabicyclo[3.2.1]octane (AETABO, 7) by 1H and 13C NMR in D2O solution inside the NMR sample tube, as an intermediate and collateral product of the reaction, respectively. Further, a reaction of 1,3,6,8-tetraazatricyclo[4.4.1.13,8]dodecane (TATD) with 15N-labeled ammonium chloride was carried out. The 15N NMR and GC-MS experiments indicated that 15N was incorporated into TATU, TABO, and urotropine.  相似文献   

4.
The direct molecular structure implementations of the gage-including atomic orbital (GIAO), individual gages for atoms in molecules (IGAIM) and continuous set of gage transformations (CSGT) methods for calculating nuclear magnetic shielding tensors at both the Hartree-Fock (HF) and density functional (B3LYP) levels of theory with 6-31G(d), 6-311G(d), 6-31++G(d,p), 6-311++G(d,p), and 6-311++G(df,pd) basis sets are presented. Dependence on the 1H and 13C NMR chemical shifts on the choice of method and basis set have been investigated. Also, these chemical shifts of 2-aryl-1,3,4-oxadiazoles 5a–g have been performed related to dihedral angles (C4–C3–C2–O) of two conformers. The optimized molecular geometries and 1H and 13C chemical shift values of 2-aryl-1,3,4-oxadiazoles 5a–g in the ground state have been obtained. The linear correlation coefficients of 13C NMR chemical shifts for these molecules were given. The new nuclear magnetic shielding tensors of tetramethylsilane (TMS) were calculated. The data of 2-aryl-1,3,4-oxadiazole derivatives display significant molecular structure and NMR analysis. Also, these provide the basis for future design of efficient materials having the 1,3,4-oxadiazole core.  相似文献   

5.
The assignment of the signals for the H and C atoms of four diastereomers (without their separation) of 2-(1-aminoethyl)bicyclo[2.2.1]heptane (1) and its hydrochloride (2) (the antiviral drug deitiforin) was performed for the first time by two-dimensional 1H and 13C NMR spectroscopy. The effects of the substituent at position 2 of norbornane on the chemical shifts of the -, -, and -carbon atoms of the bicycle were examined using the increments for alkanes. The changes in the chemical shifts of the C(6) and C(7) atoms are substantially larger than those for the other C atoms, which made it possible to identify the exo and endo forms. Each of these forms exists as a mixture of two diastereomers. The effect of the positive charge of the N atom on the -protons, which are closely spaced, but separated by a number of covalent bonds, was considered on going from amine 1 to hydrochloride 2. Based on significant changes in shielding of these H atoms, the configurations of the asymmetric center in the CHMe(NH2) substituent of the diastereomers were established.  相似文献   

6.
Nitropyrazoles     
The structures of substitutedN-aminonitropyrazoles and 1- and 2-amino-4-nitro-1,2,3-triazoles as well as the site of protonation of 1-aminopyrazole were determined based on the1H,13C, and15N (14N) NMR spectra. The13C NMR spectra were recorded under conditions of13C-{1H,14N} triple resonance. Effects of substituents in the pyrazole ring on the13C and14N chemical shifts were studied. The13C,1H and15N,1H spin-spin coupling constants, obtained using techniques of [1H]13C and [1H]15N polarization transfer (SPT, INEPT), were measured, fully assigned, and discussed.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 11, pp. 2181–2186, November, 1995.For Part 8, see Ref. 1.  相似文献   

7.
Summary Unambiguous1H and13C NMR assignments for 4(3H)-quinazolinones1–6 and their corresponding 4-thiones7–12 have been made. This resulted in the revision of the previous assignments for the two benzenoid carbons (C-5 and C-8) of quinazolinones1,2,4, and5. Thionation of the nucleophilic amides1–6 has been found to cause a distinct change in the13C chemical shift of particularly C-4, but also of those of C-4a, C-5, and C-8a. One-bond and several long range heteronuclear coupling constants for the compounds have also been measured.
Kernresonanzspektroskopie von 4(3H)-Chinazolinonen und 4(3H)-Chinazolinthionen
Zusammenfassung Die1H- und13C-NMR-Spektren der 4(3H)-Chinazolinone1–6 und ihrer entsprechenden 4-Thione7–12 wurden zugeordnet. Dabei zeigte sich, daß eine frühere Zuordnung der beiden benzoiden Kohlenstoffe (C-5 und C-8) der Chinazolinone1,2,4 und5 falsch war. Ersatz des Sauerstoffs durch Schwefel in den nukleophilen Amiden1–6 führt insbesondere für C-4, aber auch für C-4a, C-5 und C-8a zu einer deutlichen Änderung der chemischen Verschiebung. Heteronukleare Kopplungskonstanten über eine und über mehrere Bindungen wurden bestimmt.
  相似文献   

8.
The synthesis and structural characterization of a tetrazine-based catecholamide (CAM) ligand, N,N′-bis(N″-(aminoethyl)-2,3-bis(hydroxy)benzamide)-1,2,4,5-tetrazine-3,6-diamine (5), were investigated. All compounds were characterized by 1H NMR spectroscopy, 13C NMR spectroscopy, and FTIR spectroscopy. The protonation equilibria of 5 and complexation capacities (log βpqr) of Cd2+, Co2+, and Cu2+ complexes of 5 were evaluated through potentiometric titration and spectrophotometric titration, respectively. Species independent pM value (=?log [M]free) was used to compare metal affinities with the final sequence Cu2+ > Cd2+ > Co2+. Results show that 5 has potential for heavy metal removal.  相似文献   

9.
The intramolecular dynamic behavior of the tetrahedrane-type cluster [Fe2(CO)6(μ-SNH)] 1 was studied by 13C NMR spectroscopy. The 57Fe chemical shift of 1 and the coupling constants 1 J(57Fe,13C) were measured. These NMR parameters, and also 1 J(57Fe,15N), were found to be in good agreement with data calculated by using density functional theory (DFT) methods (B3LYP), based on the geometry calculated at the 6-311+G(d,p) level of theory. The isolobal replacement of the Fe(CO)3 with BH fragments leads to the tetrahedranes [Fe(CO)3(BH)(μ-SNH)] 2 and [(HB)2(μ-SNH)] 3. Both were identified by calculations as minima on the respective potential energy surface (PES). However, the tetrahedrane-type structure of 3 is much higher in energy when compared with the planar cyclic isomers 3a and 3b.  相似文献   

10.
1H,13C,14N and15N NMR measurements are reported for four mesoionic 1-oxa-2, 3, 4-triazoles containing exocyclic nitrogenous groups. The NMR signal assignments are discussed and compared with those previously published for some corresponding oxatriazoles. The results obtained support the proposed cyclic mesoionic structures for the compounds studied. The questions of possible charge delocalization and valence tautomerism are addressed. Compound with N H as a exocyclic group (Fig. 1) is found to be relatively unstable, this is attributed to proton migration in the corresponding non-cyclic form of this molecule.Published in Khimiya Geterotsikiicheskikh Soedinenii, No. 9, pp. 1260–1263, September, 1995.  相似文献   

11.
The complete 1H, 13C and 15N NMR analyses for a series of 25 diaryl-aldimines containing phenyl, pyridyl, pyrazolone and furanyl moieties are described herein. Detailed evaluation of substituent chemical shift and coupling constant effects showed that interaction between the lone pair of the pyrazolone carbonyl group or the nitrogen of 2-substitued pyridines with the aldimine hydrogen increases the value and shifts the resonance signal for this hydrogen to high frequency, in the 1H NMR spectra. The X-ray crystal structure analysis of pyrazolone substituted aldimines evidenced the planarity of the aryl groups which are conjugated with the CN double bond. In the case of the N-(2-pyridinemethylene)-1,5-dimethyl-2-phenyl-1,2-dihydro-pyrazol-3-one, two rotamers were observed in the same unit cell.  相似文献   

12.
Mercury cyanide complexes of alkyldiamines (16), [Hg(L)(CN)2] (where L?=?en (1,2-diaminoethane), pn (1,3-diaminopropane), N-Me-en, N, N′-Me2-en, N, N′-Et2-en, and N, N′-ipr2-en), have been synthesized and characterized by elemental analysis, IR, 13C, and 15N solution NMR in DMSO-d6, as well as 13C, 15N, and 199Hg solid-state NMR spectroscopy. Complexes 1 and 2 have been studied computationally, built and optimized by GAUSSIAN03 using DFT at B3LYP level with LanL2DZ basis set. Binding modes of en and bn (where bn?=?1,4-diaminobutane) toward Hg(CN)2 are completely different. Complexes with en and pn show chelating binding to Hg(II), while bn behaves as a bridging ligand to form a polymeric structure, [Hg(CN)2-bn] [B.A. Al-Maythalony, M. Fettouhi, M.I.M. Wazeer, A.A. Isab. Inorg. Chem. Commun., 12, 540 (2009).]. The solution 13C NMR of the complexes demonstrates a slight shift of the ?C≡N (0.9 to 2?ppm) and ?C–NH2 (0.25 to 6?ppm) carbon resonances, while the other resonances are relatively unaffected. 15N labeling studies have shown involvement of alkyldiamine ligands in coordination to the metal. The principal components of the 13C, 15N, and 199Hg shielding tensors have been determined from solid-state NMR data. Antimicrobial activity studies show that the complexes exhibit higher antibacterial activities toward various microorganisms than Hg(CN)2.  相似文献   

13.
The complexation reactions between Mg2+, Ca2+, Ag+ and Cd2+ metal cations with N-phenylaza-15-crown-5 (Ph-N15C5) were studied in acetonitrile (AN)–methanol (MeOH), methanol (MeOH)–water (H2O) and propanol (PrOH)–water (H2O) binary mixtures at different temperatures using the conductometric method. The conductance data show that the stochiometry of all of the complexes with Mg2+, Ca2+, Ag+ and Cd2+ cations is 1:1 (L:M). The stability of the complexes is sensitive to the solvent composition and a non-linear behaviour was observed for variation of log K f of the complexes versus the composition of the binary mixed solvents. The selectivity order of Ph-N15C5 for the metal cations in neat MeOH is Ag+>Cd2+>Ca2+>Mg2+, but in the case of neat AN is Ca2+>Cd2+>Mg2+>Ag+. The values of thermodynamic parameters (ΔH c o , ΔS c o ) for formation of Ph-N15C5–Mg2+, Ph-N15C5–Ca2+, Ph-N15C5–Ag+ and Ph-N15C5–Cd2+ complexes were obtained from temperature dependence of stability constants and the results show that the thermodynamics of complexation reactions is affected by the nature and composition of the mixed solvents.  相似文献   

14.
15.
Interactions among Cd2+, glutamic acid (Glu), and adenosine 5′-triphosphate (ATP) have been studied by potentiometric pH titration, IR, Raman, fluorescence, and NMR methods. In the Cd2+–ATP binary system, the main interaction sites are the α-, β-, and γ-phosphate groups, N-1, and/or N-7. Cd2+ binds to the N-1 site at relatively low pH and binds to the N-7 site of adenosine ring of ATP with increasing pH. In the Cd2+–Glu–ATP ternary system, ATP mainly binds to Cd2+ by the triphosphate chain. Oxygens of Glu coordinate with Cd2+ to form a complex to catalyze ATP hydrolysis. Hydrolysis of ATP catalyzed by the CdGlu complex was studied at pH 7.0 and 80°C by 31P-NMR spectrometry. Kinetics studies showed that the rate constant of ATP hydrolysis was 0.0199?min?1 in the ternary system, which is 9.9-fold faster than that in the ATP solution (2.01?×?10?3?min?1). Hydrolysis occurs through an addition–elimination reaction mechanism with Cd2+ regulating the recognition and catalytic hydrolysis of ATP; water participates in the hydrolysis reaction of ATP at different steps with different functions in the ternary system.  相似文献   

16.
Summary The conformation and relative configuration of [1-(2H-azirin-2-yl)alkyl]phosphonates (2) has been established by thorough investigation of some characteristic representatives of the series by1H,13C,15N, and31P NMR spectroscopy. It is shown that the chemical shift of the proton located to the phosphonate group can be used as a criterion for the discrimination and stereochemical assignment of diastereoisomers. NMR spectroscopic features of the compounds are discussed in terms of structural relationships.Dedicated to Univ.-Prof. Dr.K. Schlögl with the best wishes to his 70th birthday  相似文献   

17.
Synthetic efforts towards the indole alkaloid natural product roquefortine C resulted in the formation of an unknown intermediate. Elucidation of the structure of this molecule relied on the use of long‐range 1H‐15N 2D‐NMR. Computational predictions were used to facilitate the location of weak responses in long‐range 1H‐13C HMBC spectra. These methods provided conclusive evidence that this compound possessed a novel tetracycle. The complete 12H, 13C, and 15N chemical shift assignments of this unique fused imidazolidinone tetrahydropyrroloindole derivative are reported.  相似文献   

18.
Two new diamagnetic, mononuclear and aminated porphyrin complexes of O,O-trans-Cd (3-trans) and O,S-cis-Cd (4-cis) have been synthesized and characterized by 1H, 13C NMR spectroscopy. The crystal structures of (acetato)(N-2-furancarboxamido-meso-tetraphenylporphyrinato)cadmium(II) [Cd(N-NHCO-2-C4H3O-tpp)(OAc); 3-trans] and (acetato)(N-2-thiophenecarboxamido-meso-tetraphenylporphyrinato)cadmium(II) [Cd(N-NHCO-2-C4H3S-tpp)(OAc); 4-cis] were determined. The coordination sphere around Cd2+ is a distorted square-based pyramid in which the apical site is occupied by a bidentate chelating OAc group for 3-trans and 4-cis. The plane of three pyrrole nitrogen atoms [i.e., N(1), N(2), N(4) for 3-trans and N(1), N(2), N(3) for 4-cis] strongly bonded to Cd2+ is adopted as a reference plane 3N. The N(3) and N(4) pyrrole rings bearing the 2-furancarboxamido (Fr) and 2-thiophenecarboxamido groups in 3-trans and 4-cis, respectively, deviate mostly from the 3N plane, thus orienting separately with a dihedral angle of 33.4° and of 31.0°. In 3-trans, Cd2+ and N(5) are located on different sides at 1.06 and −1.49 Å from its 3N plane, while in 4-cis, Cd2+ and N(5) are also located on different sides at 1.04 and −1.53 Å from its 3N plane. An attractive electrostatic interaction between the Cd2+ and O(4) atoms in furan stabilizes the O,O-trans conformer of 3. A repulsive electrostatic interaction between Cd2+ and S(1)+ destabilizes the O,S-trans conformer of 4. Both of these repulsive and the mutually attractive interactions between S(1)+ and O(3) atoms favor the O,S-cis rotamer of 4 both in the vapor phase and in low polarity solvents. NOE difference spectroscopy, HMQC and HMBC were employed for the unambiguous assignment of the 1H and 13C NMR resonances of 3-trans and 4-cis in CDCl3 at 20 and −50 °C.  相似文献   

19.
A convenient methodology was developed for a very accurate calculation of 13C NMR chemical shifts of the title compounds. GIAO calculations with density functional methods (B3LYP, B3PW91, PBE1PBE) and 6-311+G(2d,p) basis set predict experimental chemical shifts of 3-ethynylcyclopropene (1), 1-ethynylcyclopropane (2) and 1,1-diethynylcyclopropane (3) with high accuracy of 1–2 ppm. The present article describes in detail the effect of geometry choice, density functional method, basis set and effect of solvent on the accuracy of GIAO calculations of 13C NMR chemical shifts. In addition, the particular dependencies of 13C chemical shifts on the geometry of cyclopropane ring were investigated.  相似文献   

20.
Data on the NMR spectroscopy of C, N, O, Si, P, and Sn donor atoms of platinum metal complexes in solutions are surveyed. The chemical shift of a donor atom mainly depends on the ligand in the trans-position (due to the trans-effect). The chemical shift of a donor atom on a particular coordinate of the complex (coordinate shift, CSh) is an attribute of this coordinate and can be used to identify such a coordinate in platinum metal complexes and to determine the structures of complexes. Based on the known data, CSh diagrams were composed for 1H, 13C, 14N, 17O, 19F, 31P, and 119Sn. Examples of using the CShs for determining the structures of platinum metal complexes in solutions are presented.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号