首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The exact dynamic analysis of plane frames should consider the effect of mass distribution in beam elements, which can be achieved by using the dynamic stiffness method. Solving for the natural frequencies and mode shapes from the dynamic stiffness matrix is a nonlinear eigenproblem. The Wittrick-Williams algorithm is a reliable tool to identify the natural frequencies. A deflated matrix method to determine the mode shapes is presented. The dynamic stiffness matrix may create some null modes in which the joints of beam elements have null deformation. Adding an interior node at the middle of beam elements can eliminate the null modes of flexural vibration, but does not eliminate the null modes of axial vibration. A force equilibrium approach to solve for the null modes of axial vibration is presented. Orthogonal conditions of vibration modes in the Bernoulli-Euler plane frames, which are required in solving the transient response, are theoretically derived. The decoupling process for the vibration modes of the same natural frequency is also presented.  相似文献   

2.
For the spatially coupled free vibration analysis of thin-walled composite I-beam with symmetric and arbitrary laminations, the exact dynamic stiffness matrix based on the solution of the simultaneous ordinary differential equations is presented. For this, a general theory for the vibration analysis of composite beam with arbitrary lamination including the restrained warping torsion is developed by introducing Vlasov's assumption. Next, the equations of motion and force–displacement relationships are derived from the energy principle and the first order of transformed simultaneous differential equations are constructed by using the displacement state vector consisting of 14 displacement parameters. Then explicit expressions for displacement parameters are derived and the exact dynamic stiffness matrix is determined using force–displacement relationships. In addition, the finite-element (FE) procedure based on Hermitian interpolation polynomials is developed. To verify the validity and the accuracy of this study, the numerical solutions are presented and compared with analytical solutions, the results from available references and the FE analysis using the thin-walled Hermitian beam elements. Particular emphasis is given in showing the phenomenon of vibrational mode change, the effects of increase of the modulus and the bending–twisting coupling stiffness for beams with various boundary conditions.  相似文献   

3.
An exact dynamic stiffness method is developed for predicting the free vibration characteristics of a three-beam system, which is composed of three non-identical uniform beams of equal length connected by innumerable coupling springs and dashpots. The Bernoulli-Euler beam theory is used to define the beams’ dynamic behaviors. The dynamic stiffness matrix is formulated from the general solutions of the basic governing differential equations of a three-beam element in damped free vibration. The derived dynamic stiffness matrix is then used in conjunction with the automated Muller root search algorithm to calculate the free vibration characteristics of the three-beam systems. The numerical results are obtained for two sets of the stiffnesses of springs and a large variety of interesting boundary conditions.  相似文献   

4.
In this paper, an exact dynamic stiffness formulation using one-dimensional (1D) higher-order theories is presented and subsequently used to investigate the free vibration characteristics of solid and thin-walled structures. Higher-order kinematic fields are developed using the Carrera Unified Formulation, which allows for straightforward implementation of any-order theory without the need for ad hoc formulations. Classical beam theories (Euler–Bernoulli and Timoshenko) are also captured from the formulation as degenerate cases. The Principle of Virtual Displacements is used to derive the governing differential equations and the associated natural boundary conditions. An exact dynamic stiffness matrix is then developed by relating the amplitudes of harmonically varying loads to those of the responses. The explicit terms of the dynamic stiffness matrices are also presented. The resulting dynamic stiffness matrix is used with particular reference to the Wittrick–Williams algorithm to carry out the free vibration analysis of solid and thin-walled structures. The accuracy of the theory is confirmed both by published literature and by extensive finite element solutions using the commercial code MSC/NASTRAN®MSC/NASTRAN®.  相似文献   

5.
The paper addresses the in-plane free vibration analysis of rotating beams using an exact dynamic stiffness method. The analysis includes the Coriolis effects in the free vibratory motion as well as the effects of an arbitrary hub radius and an outboard force. The investigation focuses on the formulation of the frequency dependent dynamic stiffness matrix to perform exact modal analysis of rotating beams or beam assemblies. The governing differential equations of motion, derived from Hamilton's principle, are solved using the Frobenius method. Natural boundary conditions resulting from the Hamiltonian formulation enable expressions for nodal forces to be obtained in terms of arbitrary constants. The dynamic stiffness matrix is developed by relating the amplitudes of the nodal forces to those of the corresponding responses, thereby eliminating the arbitrary constants. Then the natural frequencies and mode shapes follow from the application of the Wittrick–Williams algorithm. Numerical results for an individual rotating beam for cantilever boundary condition are given and some results are validated. The influences of Coriolis effects, rotational speed and hub radius on the natural frequencies and mode shapes are illustrated.  相似文献   

6.
A general theory for the forced vibration of multi-coupled one-dimensional periodic structures is presented as a sequel to a much earlier general theory for free vibration. Starting from the dynamic stiffness matrix of a single multi-coupled periodic element, it derives matrix equations for the magnitudes of the characteristic free waves excited in the whole structure by prescribed harmonic forces and/or displacements acting at a single periodic junction. The semi-infinite periodic system excited at its end is first analysed to provide the basis for analysing doubly infinite and finite periodic systems. In each case, total responses are found by considering just one periodic element. An already-known method of reducing the size of the computational problem is reexamined, expanded and extended in detail, involving reduction of the dynamic stiffness matrix of the periodic element through a wave-coordinate transformation. Use of the theory is illustrated in a combined periodic structure+finite element analysis of the forced harmonic in-plane motion of a uniform flat plate. Excellent agreement between the computed low-frequency responses and those predicted by simple engineering theories validates the detailed formulations of the paper. The primary purpose of the paper is not towards a specific application but to present a systematic and coherent forced vibration theory, carefully linked with the existing free-wave theory.  相似文献   

7.
Here, an analytical approach for the dynamic analysis, viz., free and forced vibrations, of curved nanobeams using nonlocal elasticity beam theory based on Eringen formulation coupled with a higher-order shear deformation accounting for through thickness stretching is investigated. The formulation is general in the sense that it can be deduced to analyse the effect of various structural theories pertaining to curved nanobeams. It also includes inplane, rotary and coupling inertia terms. The governing equations derived, using Hamiltons principle, are solved in conjunction with Naviers solutions. The free vibration results are obtained employing the standard eigenvalue analysis whereas the displacement/stress responses in time domain for the curved nanobeams subjected to rectangular pulse loading are evaluated based on Newmarks time integration scheme. The formulation is validated considering problems for which solutions are available. A comparative study is done here by different theories obtained through the formulation. The effects of various structural parameters such as thickness ratio, beam length, rise of the curved beam, loading pulse duration, and nonlocal scale parameter are brought out on the dynamic behaviours of curved nanobeams.  相似文献   

8.
The dynamic stiffness method is the exact method for the dynamic analysis of plane frames using the continuous-coordinate system to consider the effect of mass distribution in beam elements. The dynamic stiffness method may create some null modes where the joints of beam element have null deformation. Unlike the Bernoulli–Euler frames, adding an interior node at the middle of the beam elements cannot normalize all the null modes of flexural vibration in the Timoshenko frames. The floating interior-node scheme is proposed to eliminate the null modes of flexural vibration in the Timoshenko frames. Orthogonal properties of vibration modes in Timoshenko plane frames are theoretically derived, through which the equations of motion in beam elements can be transformed into the decoupled equations of motion in terms of mode amplitudes.  相似文献   

9.
Some dynamical properties of sandwich beams and plates are discussed. The types of elements investigated are three-layered structures with lightweight honeycomb or foam cores with thin laminates bonded to each side of the core. A six order differential equation governing the apparent bending of sandwich beams is derived using Hamilton's principle. Bending, shear and rotation are considered. Boundary conditions for free, clamped and simply supported beams are formulated. The apparent bending stiffness of sandwich beams is found to depend on the frequency and the boundary conditions for the structure. Simple measurements on sandwich beams are used to determine the bending stiffness of the entire structure and at the same time the bending stiffness of the laminates as well as the shear stiffness of the core. A method for the prediction of eigenfrequencies and modes of vibration are presented. Eigenfrequencies for rectangular and orthotropic sandwich plates are calculated using the Rayleigh-Ritz technique assuming frequency dependent material parameters. Predicted and measured results are compared.  相似文献   

10.
部分浸没圆柱壳声固耦合计算的半解析法研究   总被引:1,自引:0,他引:1       下载免费PDF全文
郭文杰  李天匀  朱翔  屈凯旸 《物理学报》2018,67(8):84302-084302
部分浸没圆柱壳-流场耦合系统的声振分析是一种典型的半空间域内声固耦合问题,其振动及声学计算目前主要依赖于数值方法求解,但无论从检验数值法还是从机理上揭示其声固耦合特性,解析或半解析方法的发展都是不可或缺的.本文提出了一种半解析方法,先将声场坐标系建立在自由液面上,采用正弦三角级数来满足自由液面上的声压释放边界条件;接着基于二维Flügge薄壳理论建立了以圆柱圆心为坐标原点的壳-液耦合系统的控制方程;然后再利用Galerkin法处理声固耦合界面的速度连续条件,推导得到声压幅值与壳体位移幅值之间的关系矩阵并求解该耦合系统的振动和水下声辐射.与有限元软件Comsol进行了耦合系统自由、受迫振动和水下辐射噪声计算结的对比分析,表明本文方法准确可靠.本文的研究为解析求解弹性结构与声场部分耦合的声振问题提供了新的思路.  相似文献   

11.
A method has been developed for determining the transient response of a beam. The beam is divided into several continuous Timoshenko beam elements. The overall dynamic stiffness matrix is assembled in turn. Using Leung's equation, we derive the overall mass and stiffness matrices which are more suitable for response analysis than the overall dynamic stiffness matrix. The forced vibration of the beam is computed by the precise time integration method. Three illustrative beams are discussed to evaluate the performance of the current method. Solutions calculated by the finite element method and theoretical analysis are also enumerated for comparison. In these examples, we have found that the current method can solve the forced vibration of structures with a higher precision.  相似文献   

12.
This paper addresses the evaluation of the exact natural frequencies and vibration modes of structures obtained by assemblage of plane circular arched Timoshenko beams. The exact dynamic stiffness matrix of the single circular arch, in which both the in-plane and out-of-plane motions are taken into account, is derived in an useful dimensionless form by revisiting the mathematical approach already adopted by Howson and Jemah (1999 [18]), for the in plane and the out-of-plan natural frequencies of curved Timoshenko beams. The knowledge of the exact dynamic stiffness matrix of the single arch makes the direct evaluation of the exact global dynamic stiffness matrix of spatial arch structures possible. Furthermore, it allows the exact evaluation of the frequencies and the corresponding vibration modes, for the distributed parameter model, through the application of the Wittrick and Williams algorithm. Consistently with the dimensionless form proposed in the derivation of the equations of motion and the dynamic stiffness matrix, an original and extensive parametric analysis on the in-plane and out-of-plane dynamic behaviour of the single arch, for a wide range of structural and geometrical dimensionless parameters, has been performed. Moreover, some numerical applications, relative to the evaluation of exact frequencies and the corresponding mode shapes in spatial arched structures, are reported. The exact solution has been numerically validated by comparing the results with those obtained by a refined finite element simulation.  相似文献   

13.
14.
A finite difference method was used to study the effect of inplane loads on the dynamic response of a square flat plate subjected to a transverse blast load. The method can be easily programmed for rapid evaluation on a digital computer. A modal superposition method of analysis and a shock spectrum for the load are used. It is shown that inplane tension loads significantly influence the stiffness and subsequent dynamic response of flat plates.  相似文献   

15.
A superconducting magnetic bearing is a dynamic system, which undergoes vibrations at various frequencies during its operation. In this study, we investigated the free vibration frequency modes of a permanent magnet (PM) levitated over a high temperature superconductor (HTS) where the vibration was provided by the seismic activities of the earth. The amplitude of the vibration was less than 1 μm as measured by a vibrometer. A disk shaped PM was levitated over a melt-textured HTS YBCO (yttrium barium copper oxide). The experimental setup was adopted to do the fast Fourier transform analysis of the vibration characteristics of the levitated PM. A cross-coupling between the vibration frequency modes of vertical, lateral and angular is observed in all respective directions for any particular vibration frequency measurement. The results indicate that all the vibration modes are actually the combination of the pure vibration frequency modes. The theoretical predictions based on the frozen-image concept show that the ratio of the vertical to lateral stiffness should be higher than 2 in the dynamic case, which is observed experimentally.  相似文献   

16.
The natural frequencies of a circular plate of variable thickness under the action of an inplane force are discussed on the basis of the classical theory of plates. The governing differential equation of motion is solved by the method of Frobenius. Frequency parameters of clamped as well as simply supported plates in the first two modes of vibration are computed for various values of a taper parameter, β, and the inplane force, both for linear and parabolic variations of thickness.  相似文献   

17.
While the subject of free vibration analysis of the completely free rectangular plate has a history which goes back nearly two centuries it remains a fact that most theoretical solutions to this classical problem are considered to be at best approximate in nature. This is because of the difficulties which have been encountered in trying to obtain solutions which satisfy the free edge conditions as well as the governing differential equation. In a new approach to this problem, by using the method of superposition, it is shown that solutions which satisfy identically the differential equation and which satisfy the boundary conditions with any desired degree of accuracy are obtained. Eigenvalues of four digit accuracy are provided for a wide range of plate aspect ratios and modal shapes. Exact delineation is made between the three families of modes which are characteristic of this plate vibration problem. Accurate modal shapes are provided for the response of completely free square plates.  相似文献   

18.
An extended Rayleigh-Ritz method is presented for solving vibration problems of a polygonal plate having orthogonal straight edges. The polygonal plate is considered as an assemblage of several rectangular plates. For each element rectangular plate, the transverse displacement is approximated by interpolation functions corresponding to unknown displacements and slopes at the discrete points which are chosen along the edges, and series of trial functions which satisfy homogeneous artificial boundary conditions. By minimizing the energy functional corresponding to the assumed displacement function, the dynamic stiffness matrix of the element rectangular plate, which is similar to that obtained in the finite element method, is derived. The dynamic stiffness matrix of the whole system is obtained by summing up those of the element rectangular plates. Numerical results are presented for the natural frequencies and mode shapes of cantilever L-shaped and T-shaped plates.  相似文献   

19.
An extended finite element transfer matrix method, in combination with stiffness equation transfer, is applied to dynamic response analysis of the structures under periodic excitations. In the present method, the transfer of state vectors from left to right in a combined finite element-transfer matrix (FE-TM) method is changed into the transfer of general stiffness equations of every section from left to right. This method has the advantages of reducing the order of standard transfer equation systems, and minimizing the propagation of round-off errors occurring in recursive multiplication of transfer and point matrices. Furthermore, the drawback that in the ordinary FE-TM method, the number of degrees of freedom on the left boundary be the same on the right boundary, is now avoided. A FESET program based on this method using microcomputers is developed. Finally, numerical examples are presented to demonstrate the accuracy as well as the potential of the proposed method for steady state vibration response analysis of structures.  相似文献   

20.
A new spectral finite element formulation is presented for modeling the sloshing and the acoustic waves in nearly incompressible fluids. The formulation makes use of the Legendre polynomials in deriving the finite element interpolation shape functions in the Lagrangian frame of reference. The formulated element uses Gauss–Lobatto–Legendre quadrature scheme for integrating the volumetric stiffness and the mass matrices while the conventional Gauss–Legendre quadrature scheme is used on the rotational stiffness matrix to completely eliminate the zero energy modes, which are normally associated with the Lagrangian FE formulation. The numerical performance of the spectral element formulated here is examined by doing the inf–sup test on a standard rectangular rigid tank partially filled with liquid. The eigenvalues obtained from the formulated spectral element are compared with the conventional equally spaced node locations of the h-type Lagrangian finite element and the predicted results show that these spectral elements are more accurate and give superior convergence. The efficiency and robustness of the formulated elements are demonstrated by solving few standard problems involving free vibration and dynamic response analysis with undistorted and distorted spectral elements, and the obtained results are compared with available results in the published literature.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号