首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Hypothetical scanning (HS) is a method for calculating the absolute entropy S and free energy F from a sample generated by any simulation technique. With this approach each sample configuration is reconstructed with the help of transition probabilities (TPs) and their product leads to the configuration's probability, hence to the entropy. Recently a new way for calculating the TPs by Monte Carlo (MC) simulations has been suggested, where all system interactions are taken into account. Therefore, this method--called HSMC--is in principle exact where the only approximation is due to insufficient sampling. HSMC has been applied very successfully to liquid argon, TIP3P water, self-avoiding walks on a lattice, and peptides. Because molecular dynamics (MD) is considered to be significantly more efficient than MC for a compact polymer chain, in this paper HSMC is extended to MD simulations as applied to peptides. Like before, we study decaglycine in vacuum but for the first time also a peptide with side chains, (Val)(2)(Gly)(6)(Val)(2). The transition from MC to MD requires implementing essential changes in the reconstruction process of HSMD. Results are calculated for three microstates, helix, extended, and hairpin. HSMD leads to very stable differences in entropy TDeltaS between these microstates with small errors of 0.1-0.2 kcal/mol (T=100 K) for a wide range of calculation parameters with extremely high efficiency. Various aspects of HSMD and plans for future work are discussed.  相似文献   

2.
Hypothetical scanning Monte Carlo (HSMC) is a method for calculating the absolute entropy S and free energy F from a given MC trajectory developed recently and applied to liquid argon, TIP3P water, and peptides. In this paper HSMC is extended to random coil polymers by applying it to self-avoiding walks on a square lattice--a simple but difficult model due to strong excluded volume interactions. With HSMC the probability of a given chain is obtained as a product of transition probabilities calculated for each bond by MC simulations and a counting formula. This probability is exact in the sense that it is based on all the interactions of the system and the only approximation is due to finite sampling. The method provides rigorous upper and lower bounds for F, which can be obtained from a very small sample and even from a single chain conformation. HSMC is independent of existing techniques and thus constitutes an independent research tool. The HSMC results are compared to those obtained by other methods, and its application to complex lattice chain models is discussed; we emphasize its ability to treat any type of boundary conditions for which a reference state (with known free energy) might be difficult to define for a thermodynamic integration process. Finally, we stress that the capability of HSMC to extract the absolute entropy from a given sample is important for studying relaxation processes, such as protein folding.  相似文献   

3.
The hypothetical scanning (HS) method is a general approach for calculating the absolute entropy S and free energy F by analyzing Boltzmann samples obtained by Monte Carlo or molecular dynamics techniques. With HS applied to a fluid, each configuration i of the sample is reconstructed by gradually placing the molecules in their positions at i using transition probabilities (TPs). At each step of the process the system is divided into two parts, the already treated molecules (the "past"), which are fixed, and the as yet unspecified (mobile) "future" molecules. Obtaining the TP exactly requires calculating partition functions over all positions of the future molecules in the presence of the frozen past, thus it is customary to invoke various approximations to best represent these quantities. In a recent publication [Proc. Natl. Acad. Sci. USA 101, 9235 (2004)] we developed a version of HS called complete HSMC, where each TP is calculated from an MC simulation involving all of the future molecules (the complete future); the method was applied very successfully to Lennard-Jones systems (liquid argon) and a box of TIP3P water molecules. In its basic implementation the method provides lower and upper bounds for F, where the latter can be evaluated only for relatively small systems. Here we introduce a new expression for an upper bound, which can be evaluated for larger systems. We also propose a new exact expression for F and verify its effectiveness. These free energy functionals lead to significantly improved accuracy (as applied to the liquid systems above) which is comparable to our thermodynamic integration results. We formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies. Additionally, several functionals are developed and shown to provide the free energy through the analysis of a single configuration.  相似文献   

4.
While lattice models are used extensively for macromolecules (synthetic polymers proteins, etc.), calculation of the absolute entropy, S, and the free energy, F, from a given Monte Carlo (MC) trajectory is not straightforward. Recently, we have developed the hypothetical scanning MC (HSMC) method for calculating S and F of fluids. Here we extend HSMC to self-avoiding walks on a square lattice and discuss its wide applicability to complex polymer lattice models. HSMC is independent of existing techniques and thus constitutes an independent research tool; it provides rigorous upper and lower bounds for F, which can be obtained from a very small sample and even from a single chain conformation.  相似文献   

5.
Molecular Dynamics (MD) and Monte Carlo (MC) based simulation methods are widely used to investigate molecular and nanoscale structures and processes. While the investigation of systems in MD simulations is limited by very small time steps, MC methods are often stifled by low acceptance rates for moves that significantly perturb the system. In many Metropolis MC methods with hard potentials, the acceptance rate drops exponentially with the number of uncorrelated, simultaneously proposed moves. In this work, we discuss a multiparticle Acceptance Rate Optimized Monte Carlo approach (AROMoCa) to construct collective moves with near unit acceptance probability, while preserving detailed balance even for large step sizes. After an illustration of the protocol, we demonstrate that AROMoCa significantly accelerates MC simulations in four model systems in comparison to standard MC methods. AROMoCa can be applied to all MC simulations where a gradient of the potential is available and can help to significantly speed up molecular simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

6.
In molecular dynamics (MD) and Monte Carlo (MC) free energy calculations, the choices of the thermodynamic paths from state a to state b affect the accuracy of the result and the efficiency of the programs. Most of the problems occur at the initial stages of growing in a new particle into a solvent. Based on statistical mechanical perturbation theory, an accurate and efficient direct calculation of inserting a small Lennard–Jones particle into solvent is derived. This eliminates the need for calculation of the initial stages of growing in a new particle by MD or MC simulation. Examples are given to show the utility of direct calculation. The recommended procedure is to use direct calculation for a small Lennard–Jones particle and then use MD or MC simulations to calculate the ΔG of changing the small Lennard–Jones particle into the target molecule. © 1994 by John Wiley & Sons, Inc.  相似文献   

7.
An efficient Monte Carlo (MC) algorithm including concerted rotations is directly compared to molecular dynamics (MD) in all-atom statistical mechanics folding simulations of small polypeptides. The previously reported algorithm "concerted rotations with flexible bond angles" (CRA) has been shown to successfully locate the native state of small polypeptides. In this study, the folding of three small polypeptides (trpzip2/H1/Trp-cage) is investigated using MC and MD, for a combined sampling time of approximately 10(11) MC configurations and 8 micros, respectively. Both methods successfully locate the experimentally determined native states of the three systems, but they do so at different speed, with 2-2.5 times faster folding of the MC runs. The comparison reveals that thermodynamic and dynamic properties can reliably be obtained by both and that results from folding simulations do not depend on the algorithm used. Similar to previous comparisons of MC and MD, it is found that one MD integration step of 2 fs corresponds to one MC scan, revealing the good sampling of MC. The simplicity and efficiency of the MC method will enable its future use in folding studies involving larger systems and the combination with replica exchange algorithms.  相似文献   

8.
A new approach, the hypothetical scanning Monte Carlo (HSMC), for calculating the absolute entropy, S, and free energy, F, has been introduced recently and applied first to fluids (argon and water) and later to peptides. In this paper the method is further developed for peptide chains in vacuum. S is calculated from a given MC sample by reconstructing each sample conformation i step-by-step, i.e., calculating transition probabilities (TPs) for the dihedral and bond angles and fixing the related atoms at their positions. At step k of the process the chain's coordinates that have already been determined are kept fixed (the "frozen past") and TP(k) is obtained from a MC simulation of the "future" part of the chain whose TPs as yet have not been determined; when the process is completed the contribution of conformation i to the entropy is, S(i) approximately -ln Pi(k) TP(k). In a recent paper we studied polyglycine chains, modeled by the AMBER force field with constant bond lengths and bond angles (the rigid model). Decaglycine [(Gly)(10)] was studied in the helical, extended, and hairpin microstates, while (Gly)(16) was treated only in the first two microstates. In this paper the samples are increased and restudied, (Gly)(16) is also investigated in the hairpin microstate, and for (Gly)(10) approximations are tested where only part of the future is considered for calculating the TPs. We calculate upper and lower bounds for F and demonstrate that like for fluids, F can be obtained from multiple reconstructions of a single conformation. We also test a more realistic model of (Gly)(10) where the bond angles are allowed to move (the flexible model). Very accurate results for S and F are obtained which are compared to results obtained by the quasiharmonic approximation and the local states method. Thus, differences in entropy and free energy between the three microstates are obtained within errors of 0.1-0.3 kcal/mol. The HSMC method can be applied to a macromolecule with any degree of flexibility, ranging from local fluctuations to a random coil. The present results demonstrate that the difference in stability, DeltaF(mn)=F(m)-F(n) between significantly different microstates m and n, can be obtained from two simulations only without the need to resort to thermodynamic integration. Our long-term goal is to extend this method to any peptide and apply it to a peptide immersed in a box with explicit water.  相似文献   

9.
We study the liquid structure and solvation forces of dense monovalent electrolytes (LiCl, NaCl, CsCl, and NaI) in a nanometer slab-confinement by explicit-water molecular dynamics (MD) simulations, implicit-water Monte Carlo (MC) simulations, and modified Poisson-Boltzmann (PB) theories. In order to consistently coarse-grain and to account for specific hydration effects in the implicit methods, realistic ion-ion and ion-surface pair potentials have been derived from infinite-dilution MD simulations. The electrolyte structure calculated from MC simulations is in good agreement with the corresponding MD simulations, thereby validating the coarse-graining approach. The agreement improves if a realistic, MD-derived dielectric constant is employed, which partially corrects for (water-mediated) many-body effects. Further analysis of the ionic structure and solvation pressure demonstrates that nonlocal extensions to PB (NPB) perform well for a wide parameter range when compared to MC simulations, whereas all local extensions mostly fail. A Barker-Henderson mapping of the ions onto a charged, asymmetric, and nonadditive binary hard-sphere mixture shows that the strength of structural correlations is strongly related to the magnitude and sign of the salt-specific nonadditivity. Furthermore, a grand canonical NPB analysis shows that the Donnan effect is dominated by steric correlations, whereas solvation forces and overcharging effects are mainly governed by ion-surface interactions. However, steric corrections to solvation forces are strongly repulsive for high concentrations and low surface charges, while overcharging can also be triggered by steric interactions in strongly correlated systems. Generally, we find that ion-surface and ion-ion correlations are strongly coupled and that coarse-grained methods should include both, the latter nonlocally and nonadditive (as given by our specific ionic diameters), when studying electrolytes in highly inhomogeneous situations.  相似文献   

10.
An extensive computer simulation study is presented for the self-diffusion coefficient, the shear viscosity, and the thermal conductivity of Mie(14,7) fluids. The time-correlation function formalism of Green-Kubo is utilized in conjunction with molecular dynamics (MD) simulations. In addition to molecular simulations, the results of a recent study [A. Eskandari Nasrabad, J. Chem. Phys. 128, 154514 (2008)] for the mean free volume are applied to calculate the self-diffusion coefficients within a free volume theory framework. A detailed comparison between the MD simulation and free volume theory results for the diffusion coefficient is given. The density fluctuation theory of shear viscosity is used to compute the shear viscosity and the results are compared to those from MD simulations. The density and temperature dependences of different time-correlation functions and transport coefficients are studied and discussed.  相似文献   

11.

Molecular dynamics (MD) simulations were accomplished on polycaprolactone (PCL) nanocomposite systems composed of hydroxyapatite (HA) nanoparticles (0–4%) to deliver ifosfamide (IF) anticancer drug in order to achieve the most suitable drug delivery system (DDS). It was shown that the free volume (FV) was the greatest for the PCL-HA2-IF whereas the lowest value was measured for the PCL-HA0-IF. The fractional free volume (FFV) values varied similar to the FV values so that the PCL-HA2-IF had the maximum FFV (22.48%) but PCL-HA0-IF illustrated the minimum FFV (17.89%). The smallest interchain distances measured for the PCL-HA2-IF established that the greatest intermolecular interactions occurred in the PCL-HA2-IF. The highest diffusion coefficient (0.1267?×?10?4 cm2/s) was obtained for the PCL-HA0-IF whereas the lowest one was achieved for the PCL-HA2-IF (0.0688?×?10?4 cm2/s) that confirmed the drug diffusion was the slowest/most controlled in the PCL-HA2-IF which would bring about the most effective drug delivery.

  相似文献   

12.
Estimation of protein-ligand binding affinity within chemical accuracy is one of the grand challenges in structure-based rational drug design. With the efforts over three decades, free energy methods based on equilibrium molecular dynamics (MD) simulations have become mature and are nowadays routinely applied in the community of computational chemistry. On the contrary, nonequilibrium MD simulation methods have attracted less attention, despite their underlying rigor in mathematics and potential advantage in efficiency. In this work, the equilibrium and nonequilibrium simulation methods are compared in terms of accuracy and convergence rate in the calculations of relative binding free energies. The proteins studied are T4-lysozyme mutant L99A and COX-2. For each protein, two ligands are studied. The results show that the nonequilibrium simulation method can be competitively as accurate as the equilibrium method, and the former is more efficient than the latter by considering the convergence rate with respect to the cost of wall clock time. In addition, Bennett acceptance ratio, which is a bidirectional post-processing method, converges faster than the unidirectional Jarzynski equality for the nonequilibrium simulations.  相似文献   

13.
The Monte Carlo (MC) and molecular dynamics (MD) methodologies are now well established for computing equilibrium properties in homogeneous fluids. This is not yet the case for the direct simulation of two-phase systems, which exhibit nonuniformity of the density distribution across the interface. We have performed direct MC and MD simulations of the liquid-gas interface of n-pentane using a standard force-field model. We obtained density and pressure components profiles along the direction normal to the interface that can be very different, depending on the truncation and long range correction strategies. We discuss the influence on predicted properties of different potential truncation schemes implemented in both MC and MD simulations. We show that the MD and MC profiles can be made in agreement by using a Lennard-Jones potential truncated via a polynomial function that makes the first and second derivatives of the potential continuous at the cutoff distance. In this case however, the predicted thermodynamic properties (phase envelope, surface tension) deviate from experiments, because of the changes made in the potential. A further readjustment of the potential parameters is needed if one wants to use this method. We conclude that a straightforward use of bulk phase force fields in MD simulations may lead to some physical inconsistencies when computing interfacial properties.  相似文献   

14.
Central in the variational implicit-solvent model (VISM) [Dzubiella, Swanson, and McCammon Phys. Rev. Lett.2006, 96, 087802 and J. Chem. Phys.2006, 124, 084905] of molecular solvation is a mean-field free-energy functional of all possible solute-solvent interfaces or dielectric boundaries. Such a functional can be minimized numerically by a level-set method to determine stable equilibrium conformations and solvation free energies. Applications to nonpolar systems have shown that the level-set VISM is efficient and leads to qualitatively and often quantitatively correct results. In particular, it is capable of capturing capillary evaporation in hydrophobic confinement and corresponding multiple equilibrium states as found in molecular dynamics (MD) simulations. In this work, we introduce into the VISM the Coulomb-field approximation of the electrostatic free energy. Such an approximation is a volume integral over an arbitrary shaped solvent region, requiring no solutions to any partial differential equations. With this approximation, we obtain the effective boundary force and use it as the "normal velocity" in the level-set relaxation. We test the new approach by calculating solvation free energies and potentials of mean force for small and large molecules, including the two-domain protein BphC. Our results reveal the importance of coupling polar and nonpolar interactions in the underlying molecular systems. In particular, dehydration near the domain interface of BphC subunits is found to be highly sensitive to local electrostatic potentials as seen in previous MD simulations. This is a first step toward capturing the complex protein dehydration process by an implicit-solvent approach.  相似文献   

15.
One of the major challenges in the computational prediction of protein–peptide complexes is the scoring of predicted models. Usually, it is very difficult to find the most accurate solutions out of the vast number of sometimes very different and potentially plausible predictions. In this work, we tested the protocol for Molecular Dynamics (MD)-based scoring of protein–peptide complex models obtained from coarse-grained (CG) docking simulations. In the first step of the scoring procedure, all models generated by CABS-dock were reconstructed starting from their original C-alpha trace representations to all-atom (AA) structures. The second step included geometry optimization of the reconstructed complexes followed by model scoring based on receptor–ligand interaction energy estimated from short MD simulations in explicit water. We used two well-known AA MD force fields, CHARMM and AMBER, and a CG MARTINI force field. Scoring results for 66 different protein–peptide complexes show that the proposed MD-based scoring approach can be used to identify protein–peptide models of high accuracy. The results also indicate that the scoring accuracy may be significantly affected by the quality of the reconstructed protein receptor structures.  相似文献   

16.
Binding energies of ion triplets formed in ionic liquids by Li+ with two anions have been studied using quantum‐chemical calculations with implicit and explicit solvent supplemented by molecular dynamics (MD) simulations. Explicit solvent approach confirms variation of solute‐ionic liquid interactions at distances up to 2 nm, resulting from structure of solvation shells induced by electric field of the solute. Binding energies computed in explicit solvent and from the polarizable continuum model approach differ largely, even in sign, but relative values generally agree between these two models. Stabilities of ion triplets obtained in quantum‐chemical calculations for some systems disagree with MD results; the discrepancy is attributed to the difference between static optimized geometries used in quantum chemical modeling and dynamic structures of triplets in MD simulations. © 2015 Wiley Periodicals, Inc.  相似文献   

17.
Many of the most common molecular simulation methods, including Monte Carlo (MC) and molecular or stochastic dynamics (MD or SD), have significant difficulties in sampling the space of molecular potential energy surfaces characterized by multiple conformational minima and significant energy barriers. In such cases improved sampling can be obtained by special techniques that lower such barriers or somehow direct search steps toward different low energy regions of space. We recently described a hybrid MC/SD algorithm [MC(JBW)/SD] incorporating such a technique that directed MC moves of selected torsion and bond angles toward known low energy regions of conformational space. Exploration of other degrees of freedom was left to the SD part of the hybrid algorithm. In the work described here, we develop a related but simpler simulation algorithm that uses only MC to sample all degrees of freedom (e.g., stretch, bend, and torsion). We term this algorithm MC(JBW). Using simulations on various model potential energy surfaces and on simple molecular systems (n-pentane, n-butane, and cyclohexane), MC(JBW) is shown to generate ensembles of states that are indistinguishable from the canonical ensembles generated by classical Metropolis MC in the limit of very long simulations. We further demonstrate the utility of MC(JBW) by evaluating the room temperature free energy differences between conformers of various substituted cyclohexanes and the larger ring hydrocarbons cycloheptane, cyclooctane, cyclononane, and cyclodecane. The results compare favorably with available experimental data and results from previously reported MC(JBW)/SD conformational free energy calculations. © 1998 John Wiley & Sons, Inc. J Comput Chem 19: 1736–1745, 1998  相似文献   

18.
The in vitro effects of 8-MOP (concentrations of 20, 100 and 500 ng/ml) alone or in combination with UVA on mediator release from human basophils and skin mast cells (HSMC), activated with immunological and non-immunological stimuli, were investigated. With respect to basophils activated with anti-IgE serum, the results of this study show that: (i) 8-MOP alone inhibits histamine, LTC(4), IL-4 and IL-13 release concentration dependently with a maximal effect at 500 ng/ml (a concentration not reached in vivo); and (ii) UVA irradiation (5 J/cm(2)), after 8-MOP incubation, enhances this inhibitory effect on all released mediators, but for IL-4 and IL-13 the percentage inhibition is also significant for the 8-MOP concentrations (20-100 ng/ml) employed in vivo during PUVA treatment. Moreover, histamine release from basophils activated with non-immunological stimuli (FMLP and A23187) is inhibited by 8-MOP, alone or in combination with UVA. With respect to the HSMC activated with anti-IgE serum, the results show that: (i) 8-MOP alone reduces histamine release concentration dependently; and (ii) this inhibitory effect is enhanced by UVA irradiation (5 J/cm(2)). Histamine release from HSMC activated with A23187 is not modified either by 8-MOP alone or by 8-MOP plus UVA.  相似文献   

19.
Bühl M  Wipff G 《Chemphyschem》2011,12(17):3095-3105
First-principles and purely classical molecular dynamics (MD) simulations for complexes of the uranyl ion (UO(2)(2+)) are reviewed. Validation of Car-Parrinello MD simulations for small uranyl complexes in aqueous solution is discussed. Special attention is called to the mechanism of ligand-exchange reactions at the uranyl centre and to effects of solvation and hydration on coordination and structural properties. Large-scale classical MD simulations are surveyed in the context of liquid-liquid extraction, with uranyl complexes ranging from simple hydrates to calixarenes, and nonaqueous phases from simple organic solvents and supercritical CO(2) to ionic liquids.  相似文献   

20.
Replica exchange methods (REMs) are increasingly used to improve sampling in molecular dynamics (MD) simulations of biomolecular systems. However, despite having been shown to be very effective on model systems, the application of REM in complex systems such as for the simulation of protein and peptide folding in explicit solvent has not been objectively tested in detail. Here we present a comparison of conventional MD and temperature replica exchange MD (T-REMD) simulations of a beta-heptapeptide in explicit solvent. This system has previously been shown to undergo reversible folding on the time scales accessible to MD simulation and thus allows a direct one-to-one comparison of efficiency. The primary properties compared are the free energy of folding and the relative populations of different conformers as a function of temperature. It is found that to achieve a similar degree of precision T-REMD simulations starting from a random set of initial configurations were approximately an order of magnitude more computationally efficient than a single 800 ns conventional MD simulation for this system at the lowest temperature investigated (275 K). However, whereas it was found that T-REMD simulations are more than four times more efficient than multiple independent MD simulations at one temperature (300 K) the actual increase in conformation sampling was only twofold. The overall gain in efficiency using REMD resulted primarily from the ordering of different conformational states over temperature, as opposed to a large increase of conformational sampling. It is also shown that in this system exchanges are accepted primarily based on (random) fluctuations within the solvent and are not strongly correlated with the instantaneous peptide conformation raising questions in regard to the efficiency of T-REMD in larger systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号