首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 312 毫秒
1.
Alzheimer’s disease (AD) is a neurodegenerative disorder which has become an outstanding social problem. The main objective of this study was to evaluate the alterations that dementia due to AD elicits in the distribution of functional network weights. Functional connectivity networks were obtained using the orthogonalized Amplitude Envelope Correlation (AEC), computed from source-reconstructed resting-state eletroencephalographic (EEG) data in a population formed by 45 cognitive healthy elderly controls, 69 mild cognitive impaired (MCI) patients and 81 AD patients. Our results indicated that AD induces a progressive alteration of network weights distribution; specifically, the Shannon entropy (SE) of the weights distribution showed statistically significant between-group differences (p < 0.05, Kruskal-Wallis test, False Discovery Rate corrected). Furthermore, an in-depth analysis of network weights distributions was performed in delta, alpha, and beta-1 frequency bands to discriminate the weight ranges showing statistical differences in SE. Our results showed that lower and higher weights were more affected by the disease, whereas mid-range connections remained unchanged. These findings support the importance of performing detailed analyses of the network weights distribution to further understand the impact of AD progression on functional brain activity.  相似文献   

2.
Alzheimer’s disease (AD) is characterized by working memory (WM) failures that can be assessed at early stages through administering clinical tests. Ecological neuroimaging, such as Electroencephalography (EEG) and functional Near Infrared Spectroscopy (fNIRS), may be employed during these tests to support AD early diagnosis within clinical settings. Multimodal EEG-fNIRS could measure brain activity along with neurovascular coupling (NC) and detect their modifications associated with AD. Data analysis procedures based on signal complexity are suitable to estimate electrical and hemodynamic brain activity or their mutual information (NC) during non-structured experimental paradigms. In this study, sample entropy of whole-head EEG and frontal/prefrontal cortex fNIRS was evaluated to assess brain activity in early AD and healthy controls (HC) during WM tasks (i.e., Rey–Osterrieth complex figure and Raven’s progressive matrices). Moreover, conditional entropy between EEG and fNIRS was evaluated as indicative of NC. The findings demonstrated the capability of complexity analysis of multimodal EEG-fNIRS to detect WM decline in AD. Furthermore, a multivariate data-driven analysis, performed on these entropy metrics and based on the General Linear Model, allowed classifying AD and HC with an AUC up to 0.88. EEG-fNIRS may represent a powerful tool for the clinical evaluation of WM decline in early AD.  相似文献   

3.
Users of social networks have a variety of social statuses and roles. For example, the users of Weibo include celebrities, government officials, and social organizations. At the same time, these users may be senior managers, middle managers, or workers in companies. Previous studies on this topic have mainly focused on using the categorical, textual and topological data of a social network to predict users’ social statuses and roles. However, this cannot fully reflect the overall characteristics of users’ social statuses and roles in a social network. In this paper, we consider what social network structures reflect users’ social statuses and roles since social networks are designed to connect people. Taking an Enron email dataset as an example, we analyzed a preprocessing mechanism used for social network datasets that can extract users’ dynamic behavior features. We further designed a novel social network representation learning algorithm in order to infer users’ social statuses and roles in social networks through the use of an attention and gate mechanism on users’ neighbors. The extensive experimental results gained from four publicly available datasets indicate that our solution achieves an average accuracy improvement of 2% compared with GraphSAGE-Mean, which is the best applicable inductive representation learning method.  相似文献   

4.
We consider a recently introduced generalization of the Ising model in which individual spin strength can vary. The model is intended for analysis of ordering in systems comprising agents which, although matching in their binarity (i.e., maintaining the iconic Ising features of ‘+’ or ‘−’, ‘up’ or ‘down’, ‘yes’ or ‘no’), differ in their strength. To investigate the interplay between variable properties of nodes and interactions between them, we study the model on a complex network where both the spin strength and degree distributions are governed by power laws. We show that in the annealed network approximation, thermodynamic functions of the model are self-averaging and we obtain an exact solution for the partition function. This allows us derive the leading temperature and field dependencies of thermodynamic functions, their critical behavior, and logarithmic corrections at the interface of different phases. We find the delicate interplay of the two power laws leads to new universality classes.  相似文献   

5.
Individuals with mild cognitive impairment (MCI) are at high risk of developing Alzheimer’s disease (AD). Repetitive photic stimulation (PS) is commonly used in routine electroencephalogram (EEG) examinations for rapid assessment of perceptual functioning. This study aimed to evaluate neural oscillatory responses and nonlinear brain dynamics under the effects of PS in patients with mild AD, moderate AD, severe AD, and MCI, as well as healthy elderly controls (HC). EEG power ratios during PS were estimated as an index of oscillatory responses. Multiscale sample entropy (MSE) was estimated as an index of brain dynamics before, during, and after PS. During PS, EEG harmonic responses were lower and MSE values were higher in the AD subgroups than in HC and MCI groups. PS-induced changes in EEG complexity were less pronounced in the AD subgroups than in HC and MCI groups. Brain dynamics revealed a “transitional change” between MCI and Mild AD. Our findings suggest a deficiency in brain adaptability in AD patients, which hinders their ability to adapt to repetitive perceptual stimulation. This study highlights the importance of combining spectral and nonlinear dynamical analysis when seeking to unravel perceptual functioning and brain adaptability in the various stages of neurodegenerative diseases.  相似文献   

6.
This work addresses brain network analysis considering different clinical severity stages of cognitive dysfunction, based on resting-state electroencephalography (EEG). We use a cohort acquired in real-life clinical conditions, which contains EEG data of subjective cognitive impairment (SCI) patients, mild cognitive impairment (MCI) patients, and Alzheimer’s disease (AD) patients. We propose to exploit an epoch-based entropy measure to quantify the connectivity links in the networks. This entropy measure relies on a refined statistical modeling of EEG signals with Hidden Markov Models, which allow a better estimation of the spatiotemporal characteristics of EEG signals. We also propose to conduct a comparative study by considering three other measures largely used in the literature: phase lag index, coherence, and mutual information. We calculated such measures at different frequency bands and computed different local graph parameters considering different proportional threshold values for a binary network analysis. After applying a feature selection procedure to determine the most relevant features for classification performance with a linear Support Vector Machine algorithm, our study demonstrates the effectiveness of the statistical entropy measure for analyzing the brain network in patients with different stages of cognitive dysfunction.  相似文献   

7.
Since 2018, the bond market has surpassed the stock market, becoming the biggest investment area in China’s security market, and the systemic risks of China’s bond market are of non-negligible importance. Based on daily interest rate data of representative bond categories, this study conducted a dynamic analysis based on generalized vector autoregressive volatility spillover variance decomposition, constructed a complex network, and adopted the minimum spanning tree method to clarify and analyze the risk propagation path between different bond types. It is found that the importance of each bond type is positively correlated with liquidity, transaction volume, and credit rating, and the inter-bank market is the most important market in the entire bond market, while interest rate bonds, bank bonds and urban investment bonds are important varieties with great systemic importance. In addition, the long-term trend of the dynamic spillover index of China’s bond market falls in line with the pace of the interest rate adjustments. To hold the bottom line of preventing financial systemic risks of China’s bond market, standard management, strict supervision, and timely regulation of the bond markets are required, and the structural entropy, as a useful indicator, also should be used in the risk management and monitoring.  相似文献   

8.
The development of new computational approaches that are able to design the correct personalized drugs is the crucial therapeutic issue in cancer research. However, tumor heterogeneity is the main obstacle to developing patient-specific single drugs or combinations of drugs that already exist in clinics. In this study, we developed a computational approach that integrates copy number alteration, gene expression, and a protein interaction network of 73 basal breast cancer samples. 2509 prognostic genes harboring a copy number alteration were identified using survival analysis, and a protein–protein interaction network considering the direct interactions was created. Each patient was described by a specific combination of seven altered hub proteins that fully characterize the 73 basal breast cancer patients. We suggested the optimal combination therapy for each patient considering drug–protein interactions. Our approach is able to confirm well-known cancer related genes and suggest novel potential drug target genes. In conclusion, we presented a new computational approach in breast cancer to deal with the intra-tumor heterogeneity towards personalized cancer therapy.  相似文献   

9.
The successful diffusion of mobile applications in user groups can establish a good image for enterprises, gain a good reputation, fight for market share, and create commercial profits. Thus, it is of great significance for the successful diffusion of mobile applications to study mobile application diffusion and social network coevolution. Firstly, combined with a social network’s dynamic change characteristics in real life, a mobile application users’ social network evolution mechanism was designed. Then, a multi-agent model of the coevolution of a social network and mobile application innovation diffusion was constructed. Finally, the impact of mobile applications’ value perception revenue, use cost, marketing promotion investment, and the number of seed users on the coevolution of social network and mobile application diffusion were analyzed. The results show that factors such as the network structure, the perceived value income, the cost of use, the marketing promotion investment, and the number of seed users have an important impact on mobile application diffusion.  相似文献   

10.
Alzheimer’s disease (AD) is the most common and devastating dementia. Simple and practical biomarkers for AD are urgently required for accurate diagnosis and to facilitate the development of disease-modifying interventions. The subjects for the study were selected on the basis of PiB amyloid imaging by PET. Forty PiB-positive (PiB+) individuals, including cognitively healthy controls (HC), and mild cognitive impairment and AD individuals, and 22 PiB-negative (PiB−) HC participated. Employing our novel highly sensitive immunoprecipitation-mass spectrometry, we measured plasma amyloid β-proteins (Aβs; Aβ1-40 and Aβ1-42) and Aβ-approximate peptides (AβAPs), which were cleaved from amyloid precursor protein (APP). Among the AβAPs, APP669-711 appeared to be a good reference for deciphering pathological change of Aβ1-42. We evaluated the performance of the ratio of APP669-711 to Aβ1-42 (APP669-711/Aβ1-42) as a biomarker. APP669-711/Aβ1-42 significantly increased in the PiB+ groups. The sensitivity and specificity to discriminate PiB+ individuals from PiB− individuals were 0.925 and 0.955, respectively. Our plasma biomarker precisely surrogates cerebral amyloid deposition.  相似文献   

11.
Machine learning methods, such as Long Short-Term Memory (LSTM) neural networks can predict real-life time series data. Here, we present a new approach to predict time series data combining interpolation techniques, randomly parameterized LSTM neural networks and measures of signal complexity, which we will refer to as complexity measures throughout this research. First, we interpolate the time series data under study. Next, we predict the time series data using an ensemble of randomly parameterized LSTM neural networks. Finally, we filter the ensemble prediction based on the original data complexity to improve the predictability, i.e., we keep only predictions with a complexity close to that of the training data. We test the proposed approach on five different univariate time series data. We use linear and fractal interpolation to increase the amount of data. We tested five different complexity measures for the ensemble filters for time series data, i.e., the Hurst exponent, Shannon’s entropy, Fisher’s information, SVD entropy, and the spectrum of Lyapunov exponents. Our results show that the interpolated predictions consistently outperformed the non-interpolated ones. The best ensemble predictions always beat a baseline prediction based on a neural network with only a single hidden LSTM, gated recurrent unit (GRU) or simple recurrent neural network (RNN) layer. The complexity filters can reduce the error of a random ensemble prediction by a factor of 10. Further, because we use randomly parameterized neural networks, no hyperparameter tuning is required. We prove this method useful for real-time time series prediction because the optimization of hyperparameters, which is usually very costly and time-intensive, can be circumvented with the presented approach.  相似文献   

12.
This paper seeks to advance the state-of-the-art in analysing fMRI data to detect onset of Alzheimer’s disease and identify stages in the disease progression. We employ methods of network neuroscience to represent correlation across fMRI data arrays, and introduce novel techniques for network construction and analysis. In network construction, we vary thresholds in establishing BOLD time series correlation between nodes, yielding variations in topological and other network characteristics. For network analysis, we employ methods developed for modelling statistical ensembles of virtual particles in thermal systems. The microcanonical ensemble and the canonical ensemble are analogous to two different fMRI network representations. In the former case, there is zero variance in the number of edges in each network, while in the latter case the set of networks have a variance in the number of edges. Ensemble methods describe the macroscopic properties of a network by considering the underlying microscopic characterisations which are in turn closely related to the degree configuration and network entropy. When applied to fMRI data in populations of Alzheimer’s patients and controls, our methods demonstrated levels of sensitivity adequate for clinical purposes in both identifying brain regions undergoing pathological changes and in revealing the dynamics of such changes.  相似文献   

13.
Metabolism and physiology frequently follow non-linear rhythmic patterns which are reflected in concepts of homeostasis and circadian rhythms, yet few biomarkers are studied as dynamical systems. For instance, healthy human development depends on the assimilation and metabolism of essential elements, often accompanied by exposures to non-essential elements which may be toxic. In this study, we applied laser ablation-inductively coupled plasma-mass spectrometry (LA-ICP-MS) to reconstruct longitudinal exposure profiles of essential and non-essential elements throughout prenatal and early post-natal development. We applied cross-recurrence quantification analysis (CRQA) to characterize dynamics involved in elemental integration, and to construct a graph-theory based analysis of elemental metabolism. Our findings show how exposure to lead, a well-characterized toxicant, perturbs the metabolism of essential elements. In particular, our findings indicate that high levels of lead exposure dysregulate global aspects of metabolic network connectivity. For example, the magnitude of each element’s degree was increased in children exposed to high lead levels. Similarly, high lead exposure yielded discrete effects on specific essential elements, particularly zinc and magnesium, which showed reduced network metrics compared to other elements. In sum, this approach presents a new, systems-based perspective on the dynamics involved in elemental metabolism during critical periods of human development.  相似文献   

14.
为了实现车载γ谱仪巡测系统对辐射剂量率的准确测定,提出基于快速傅里叶变换(FFT)本底扣除法的改进型BP神经网络模型(FFT-BP神经网络模型)。实验采用γ射线能谱分析法,对不同间距处的137Cs放射源进行车载γ能谱测试,将得到的谱数据通过快速傅里叶变换(FFT)扣除本底,获得新的谱线数据。应用FFT-BP神经网络模型对未知剂量的车载γ谱线作辐射剂量率的定量预测,将预测结果同3个函数模型的拟合结果比较,验证FFT-BP神经网络模型的预测效果。结果表明,FFT扣除法能较好的削弱散射本底对γ谱线的影响,能有效的降低谱线本底。通过新谱线获得的特征峰面积和净谱线面积与辐射剂量率的相关系数均为0.99(p<0.05),相关性显著。模型拟合分析过程中,FFT-BP神经网络模型表现出较强的学习泛化能力,预测较理想,相对误差和累计误差分别低于0.6%和9%,效果明显优于数学模型和γ能谱全能峰法,可显著降低γ能谱分析辐射剂量率的误差,且能有效提升工作效率。因此,FFT-BP神经网络模型适用于γ能谱辐射剂量的预测分析,为车载γ谱仪巡测系统测量辐射剂量提供了一种新型有效的分析方法。  相似文献   

15.
Session-based recommendations aim to predict a user’s next click based on the user’s current and historical sessions, which can be applied to shopping websites and APPs. Existing session-based recommendation methods cannot accurately capture the complex transitions between items. In addition, some approaches compress sessions into a fixed representation vector without taking into account the user’s interest preferences at the current moment, thus limiting the accuracy of recommendations. Considering the diversity of items and users’ interests, a personalized interest attention graph neural network (PIA-GNN) is proposed for session-based recommendation. This approach utilizes personalized graph convolutional networks (PGNN) to capture complex transitions between items, invoking an interest-aware mechanism to activate users’ interest in different items adaptively. In addition, a self-attention layer is used to capture long-term dependencies between items when capturing users’ long-term preferences. In this paper, the cross-entropy loss is used as the objective function to train our model. We conduct rich experiments on two real datasets, and the results show that PIA-GNN outperforms existing personalized session-aware recommendation methods.  相似文献   

16.
This study uses the fourteen stock indices as the sample and then utilizes eight parametric volatility forecasting models and eight composed volatility forecasting models to explore whether the neural network approach and the settings of leverage effect and non-normal return distribution can promote the performance of volatility forecasting, and which one of the sixteen models possesses the best volatility forecasting performance. The eight parametric volatility forecasts models are composed of the generalized autoregressive conditional heteroskedasticity (GARCH) or GJR-GARCH volatility specification combining with the normal, Student’s t, skewed Student’s t, and generalized skewed Student’s t distributions. Empirical results show that, the performance for the composed volatility forecasting approach is significantly superior to that for the parametric volatility forecasting approach. Furthermore, the GJR-GARCH volatility specification has better performance than the GARCH one. In addition, the non-normal distribution does not have better forecasting performance than the normal distribution. In addition, the GJR-GARCH model combined with both the normal distribution and a neural network approach has the best performance of volatility forecasting among sixteen models. Thus, a neural network approach significantly promotes the performance of volatility forecasting. On the other hand, the setting of leverage effect can encourage the performance of volatility forecasting whereas the setting of non-normal distribution cannot.  相似文献   

17.
Maxwell’s demon is an entity in a 150-year-old thought experiment that paradoxically appears to violate the second law of thermodynamics by reducing entropy without doing work. It has increasingly practical implications as advances in nanomachinery produce devices that push the thermodynamic limits imposed by the second law. A well-known explanation claiming that information erasure restores second law compliance fails to resolve the paradox because it assumes the second law a priori, and does not predict irreversibility. Instead, a purely mechanical resolution that does not require information theory is presented. The transport fluxes of mass, momentum, and energy involved in the demon’s operation are analyzed and show that they imply “hidden” external work and dissipation. Computing the dissipation leads to a new lower bound on entropy production by the demon. It is strictly positive in all nontrivial cases, providing a more stringent limit than the second law and implying intrinsic thermodynamic irreversibility. The thermodynamic irreversibility is linked with mechanical irreversibility resulting from the spatial asymmetry of the demon’s speed selection criteria, indicating one mechanism by which macroscopic irreversibility may emerge from microscopic dynamics.  相似文献   

18.
During the physical foundation of his radiation formula in his December 1900 talk and subsequent 1901 article, Planck refers to Boltzmann’s 1877 combinatorial-probabilistic treatment and obtains his quantum distribution function, while Boltzmann did not. For this, Boltzmann’s memoirs are usually ascribed to classical statistical mechanics. Agreeing with Bach, it is shown that Boltzmann’s 1868 and 1877 calculations can lead to a Planckian distribution function, where those of 1868 are even closer to Planck than that of 1877. Boltzmann’s and Planck’s calculations are compared based on Bach’s three-level scheme ‘configuration–occupation–occupancy’. Special attention is paid to the concepts of interchangeability and the indistinguishability of particles and states. In contrast to Bach, the level of exposition is most elementary. I hope to make Boltzmann’s work better known in English and to remove misunderstandings in the literature.  相似文献   

19.
This note is a part of my effort to rid quantum mechanics (QM) nonlocality. Quantum nonlocality is a two faced Janus: one face is a genuine quantum mechanical nonlocality (defined by the Lüders’ projection postulate). Another face is the nonlocality of the hidden variables model that was invented by Bell. This paper is devoted the deconstruction of the latter. The main casualty of Bell’s model is that it straightforwardly contradicts Heisenberg’s uncertainty and Bohr’s complementarity principles generally. Thus, we do not criticize the derivation or interpretation of the Bell inequality (as was done by numerous authors). Our critique is directed against the model as such. The original Einstein-Podolsky-Rosen (EPR) argument assumed the Heisenberg’s principle without questioning its validity. Hence, the arguments of EPR and Bell differ crucially, and it is necessary to establish the physical ground of the aforementioned principles. This is the quantum postulate: the existence of an indivisible quantum of action given by the Planck constant. Bell’s approach with hidden variables implicitly implies rejection of the quantum postulate, since the latter is the basis of the reference principles.  相似文献   

20.
Diabetic retinopathy (DR) is a common complication of diabetes mellitus (DM), and it is necessary to diagnose DR in the early stages of treatment. With the rapid development of convolutional neural networks in the field of image processing, deep learning methods have achieved great success in the field of medical image processing. Various medical lesion detection systems have been proposed to detect fundus lesions. At present, in the image classification process of diabetic retinopathy, the fine-grained properties of the diseased image are ignored and most of the retinopathy image data sets have serious uneven distribution problems, which limits the ability of the network to predict the classification of lesions to a large extent. We propose a new non-homologous bilinear pooling convolutional neural network model and combine it with the attention mechanism to further improve the network’s ability to extract specific features of the image. The experimental results show that, compared with the most popular fundus image classification models, the network model we proposed can greatly improve the prediction accuracy of the network while maintaining computational efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号