首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Soft polymeric Janus nanoparticles (JNPs), made from polystyrene‐b‐poly(butadiene)‐b‐poly(methylmethacrylate), PS‐PB‐PMMA, triblock terpolymers, assemble into a monolayer at the water–oil interface to reduce interfacial tension. The extent to which the polymer chains can deform influences the packing density of the JNPs at the interface. The longer the polymer chains are relative to the core, the softer are the JNPs, resulting in a JNPs assembly with a lower initial lateral packing density. The interfacial activity of JNPs can be further tuned by complexation of the PMMA chains with lithium ions that are introduced into the water phase. This work provides a fundamental understanding of soft JNPs packing at the water–oil interface and provides a strategy to tailor the areal density of soft JNPs at liquid–liquid interface, enabling the design of smart responsive structured‐liquid systems.  相似文献   

2.
Polystyrene (PS) and poly(methyl methacrylate) (PMMA) mixed polymer brushes on the surface of clay layers were prepared by using in situ free radical polymerization. Free radical initiator molecules with two quaternary ammonium groups at both ends were intercalated into the interlayer spacing of clay layers. The amount of polymer brushes grafted on the surface of clay layers can be controlled by controlling the polymerization time. Thermogravimetric analysis, X‐ray diffraction, and high‐resolution transmission electron microscope results indicated successful preparation of the mixed polymer brushes on the surface of clay layers. The kinetics of the grafting of the monomers was also studied. The mixed polymer brushes on the surface of clay layers were used as compatibilizers in blends of PS and PMMA. In the blends, the intercalated clay particles tend to locate at the interface of two phases reducing the interfacial tension. In the meanwhile, PMMA homopolymer chains tend to intercalate into clay layers. The driving force for the intercalation is the compatibility between homo‐PMMA chains and PMMA brushes on the surface of clay layers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5329–5338, 2007  相似文献   

3.
Morphology, thermal and rheological properties of polymer‐organoclay composites prepared by melt‐blending of polystyrene (PS), poly(methyl methacrylate) (PMMA), and PS/PMMA blends with Cloisite® organoclays were examined by transmission electron microscopy, small‐angle X‐ray scattering, secondary ion mass spectroscopy, differential scanning calorimetry, and rheological techniques. Organoclay particles were finely dispersed and predominantly delaminated in PMMA‐clay composites, whereas organoclays formed micrometer‐sized aggregates in PS‐clay composites. In PS/PMMA blends, the majority of clay particles was concentrated in the PMMA phase and in the interfacial region between PS and PMMA. Although incompatible PS/PMMA blends remained phase‐separated after being melt‐blended with organoclays, the addition of organoclays resulted in a drastic reduction in the average microdomain sizes (from 1–1.5 μm to ca. 300–500 nm), indicating that organoclays partially compatibilized the immiscible PS/PMMA blends. The effect of surfactant (di‐methyl di‐octadecyl‐ammonia chloride), used in the preparation of organoclays, on the PS/PMMA miscibility was also investigated. The free surfactant was more compatible with PMMA than with PS; the surfactant was concentrated in PMMA and in the interfacial region of the blends. The microdomain size reduction resulting from the addition of organoclays was definitely more significant than that caused by adding the same amount of free surfactant without clay. The effect of organoclays on the rheological properties was insignificant in all tested systems, suggesting weak interactions between the clay particles and the polymer matrix. In the PS system, PMMA, and organoclay the extent of clay exfoliation and the resultant properties are controlled by the compatibility between the polymer matrix and the surfactant rather than by interactions between the polymer and the clay surface. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 44–54, 2003  相似文献   

4.
To confirm the surface activity of myristic acid in the dispersion polymerization of vinyl monomers in scCO2, the interfacial tension (IFT) at the polymer/supercritical carbon dioxide (scCO2) interface has been measured. For the IFT measurements, a high-pressure pendant drop apparatus was constructed. The IFT data was obtained by the axisymmetric drop shape analysis of melt polymer droplets formed at the tip of a capillary. The reliability of the apparatus was confirmed by measuring the IFT of polystyrene (PS)/scCO2 and polypropylene (PP)/CO2 systems. The IFT of the poly(methyl methacrylate) (PMMA)/scCO2 system with and without myristic acid was also measured. The IFT decreased on addition of myristic acid. The magnitude of the IFT depression due to the myristic acid was comparable to that of PS/scCO2 systems with the block copolymer surfactant, PS-b-poly(fluorooctyl acrylate). The surface activity of the myristic acid was confirmed by the decrease of IFT.  相似文献   

5.
Soft polymeric Janus nanoparticles (JNPs), made from polystyrene-b-poly(butadiene)-b-poly(methylmethacrylate), PS-PB-PMMA, triblock terpolymers, assemble into a monolayer at the water–oil interface to reduce interfacial tension. The extent to which the polymer chains can deform influences the packing density of the JNPs at the interface. The longer the polymer chains are relative to the core, the softer are the JNPs, resulting in a JNPs assembly with a lower initial lateral packing density. The interfacial activity of JNPs can be further tuned by complexation of the PMMA chains with lithium ions that are introduced into the water phase. This work provides a fundamental understanding of soft JNPs packing at the water–oil interface and provides a strategy to tailor the areal density of soft JNPs at liquid–liquid interface, enabling the design of smart responsive structured-liquid systems.  相似文献   

6.
The interfacial tension of hybrids composed of a tin-based phosphate glass (Pglass) and thermoplastic polymers, low-density polyethylene (LDPE), polystyrene (PS), and polypropylene (PP) was investigated using pendant drop and droplet deformation methods. High surface tension values were determined for the pure Pglass and subsequently used to obtain interfacial tension values that were found to be greater than that of most polymer blends reported in the literature. Small amplitude oscillatory shear data were fitted to the Choi-Schowalter and Palierne emulsion models in order to estimate the interfacial tension and to validate the accuracy (or lack thereof) of using a polymer emulsion model on the special Pglass-polymer systems. Although some of the hybrids showed satisfactory agreement with the emulsion models, wide ranges of interfacial tensions were obtained, suggesting that a more complicated theory that explicitly takes the Pglass-polymer interactions, shape factor, and size distributions of the dispersed Pglass phase into account may be necessary for more accurate modeling of these special hybrid systems with enhanced benefits.  相似文献   

7.
Morphology of polystyrene (PS)/poly(methyl methacrylate) (PMMA)/toluene droplets, in which phase separation proceeds, dispersed in SDS aqueous solution was examined. It changed from ex-centered PS-core/PMMA-shell to hemisphere with increasing SDS concentration. At low polymer weight fraction (wp), PS and PMMA phases contained non-negligible amount of PMMA and PS, respectively. The small amount of PS and PMMA in PMMA and PS phases, respectively, affected significantly the interfacial tension between polymer/toluene and aqueous solutions. Interfacial tension between PS and PMMA phases at low wp was measured by the spinning drop method, showing a quite low value ( approximately 10-2 mN/m). Predicted morphology obtained from calculation of minimum total interfacial free energy of the droplets using the interfacial tensions agreed well with the experimental observation.  相似文献   

8.
Dissipative particle dynamics, a simulation technique appropriate at mesoscopic scales, has been applied to investigate the interfaces in immiscible binary A/B homopolymer blends and in the ternary systems with their block copolymers. For the binary blends, the interfacial tension increases and the interface thickness decreases with increasing Flory-Huggins interaction parameter chi while the homopolymer chain length is fixed. However, when the chi parameter and one of the homopolymer chain length is fixed, increasing another homopolymer chain length will induce only a small increase on interfacial tension and slight decrease on interface thickness. For the ternary blends, adding the A-b-B block copolymer will reduce the interfacial tension. When the mole number of the block copolymer is fixed, longer block chains have higher efficiency on reducing the interfacial tension than the shorter ones. But for the block copolymers with fixed volume fraction, shorter chains will be more efficient than the longer ones on reducing the interfacial tension. Increasing the block copolymer concentration reduces interfacial tension. This effect is more prominent for shorter block copolymer chains.  相似文献   

9.
The interfacial behavior of poly(isoprene-b-methyl methacrylate) diblock copolymers (PI-b-PMMA), with similar PMMA blocks but differing in the percentage of PI segments, SP19 (5% PI) and SP38 (52% PI), was studied at the air-water interface. The surface pressure-area (pi-A) isotherms, compression-expansion cycles, and relaxation curves were compared with those of the PMMA homopolymer. The short hydrophobic PI block of SP19 does not contribute to the mean molecular area at low surface pressures and yet has a negative contribution (condensing effect) when the surface pressure increases. On the contrary, the long PI block of SP38 contributes considerably to the surface area from low to high surface pressures. The A-t relaxation curves compare well with those of PMMA at low surface pressures (pi = 2 mN.m-1), but not at intermediate and high pressures (pi = 10, 30 mN.m-1), where a clear dependence on the length of the PI block was observed. The quantitative analysis of the relaxation curves at high pressures shows both a fast and slow component, attributed mostly to the local and middle-to-long-range reorganization of PMMA chains, respectively. PI-b-PMMA diblocks and PMMA were further blended with PS. The PS and PMMA are immiscible at the air-water interface. The addition of PS does not change the pi-A isotherm of PMMA, but the copolymers blended with PS form films that are more condensed at low pressures. The Langmuir-Blodgett (LB) films transferred onto mica substrates were analyzed by atomic force microscopy (AFM). The LB films of single diblocks are uniform, while those of PI-b-PMMA and PMMA blended with PS show aggregates with variable patterns.  相似文献   

10.
We have obtained the interfacial properties of short rigid-linear chains formed from tangentially bonded Lennard-Jones monomeric units from direct simulation of the vapour-liquid interface. The full long-range tails of the potential are accounted for by means of an improved version of the inhomogeneous long-range corrections of Janec?ek [J. Phys. Chem. B 110, 6264-6269 (2006)] proposed recently by MacDowell and Blas [J. Chem. Phys. 131, 074705 (2009)] valid for spherical as well as for rigid and flexible molecular systems. Three different model systems comprising of 3, 4, and 5 monomers per molecule are considered. The simulations are performed in the canonical ensemble, and the vapor-liquid interfacial tension is evaluated using the test-area method. In addition to the surface tension, we also obtain density profiles, coexistence densities, critical temperature and density, and interfacial thickness as functions of temperature, paying particular attention to the effect of the chain length and rigidity on these properties. According to our results, the main effect of increasing the chain length (at fixed temperature) is to sharpen the vapor-liquid interface and to increase the width of the biphasic coexistence region. As a result, the interfacial thickness decreases and the surface tension increases as the molecular chains get longer. The surface tension has been scaled by critical properties and represented as a function of the difference between coexistence densities relative to the critical density.  相似文献   

11.
"Snowmanlike" polystyrene (PS)/poly(methyl methacrylate) (PMMA) composite particles were prepared by evaporation of toluene from PS/PMMA/toluene droplets dispersed in an aqueous solution of polyoxyethylene nonylphenyl ether surfactant (Emulgen 911). Partitioning experiments revealed that the Emulgen 911 concentration was higher in the droplets than in the aqueous solution during toluene evaporation. As a consequence, the interfacial tensions between the polymer phases (PS and PMMA) and the aqueous phase (gammaP-T/W) were extraordinarily low (approximately 10(-1) mN/m). The interfacial tension between the PS and PMMA phases containing toluene (gammaPS-T/PMMA-T) measured by the spinning drop method was not affected by the presence of Emulgen 911. Based on minimization of the total interfacial free energy at a polymer weight fraction in the toluene droplet of 0.17, the formation of spherical droplets is expected, in agreement with experiment. The subsequent morphology change of the PS/PMMA/toluene droplets from spherical to snowmanlike during toluene evaporation under thermodynamic equilibrium is attributed to (i) the low values of gammaP-T/W, which explains the increase in the interfacial area between the droplets and the aqueous phase, and (ii) the increase in gammaPS-T/PMMA-T with increasing polymer weight fraction.  相似文献   

12.
Thermal analysis of poly-methylmethacrylate (PMMA) impregnated porous gel silica glasses confirms that the PMMA chains form hydrogen bonds with the pore surface silanol groups. The adopted conditions for the insitu polymerisation result in about 4% of residual monomers trapped in the polymer, most of them in the amorphous structure. The polymer and monomer mixture takes up the whole of the free pore volume. Most of the residual monomer polymerises during the DSC scans above the glass transition temperature providing an excellent probe for the weak glass transition. Polymerisation in the gel silica glass medium affects the glass transition temperature, the length of polymer chains, and the degree of polymerisation.  相似文献   

13.
Submicron‐scaled cagelike polymer microspheres with hollow core/porous shell were synthesized by self‐assembling of sulfonated polystyrene (PS) latex particles at monomer droplets interface. The swelling of the PS latex particles by the oil phase provided a driving force to develop the hollow core. The latex particles also served as porogen that would disengage automatically during polymerization. Influential factors that control the morphology of the microspheres, including the reserving time of emulsions, polymerization rate, and the Hildebrand solubility parameter and polarity of the oil phase, were studied. A variety of monomers were polymerized into microspheres with hollow core/porous shell structure and microspheres with different diameters and pore sizes were obtained. The polymer microspheres were characterized by scanning electron microscopy, transmission electron microscopy, optical microscopy, and Fourier transform infrared spectroscopy. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 933–941, 2007  相似文献   

14.
Interfacial tension is a very important material parameter in two‐phase polymer blends. It determines the morphology development during processing, which is crucial for the end‐use properties of the material. Although different techniques for interfacial tension measurement give comparable results for immiscible polymers, the determination of the interfacial tension in lower critical solution temperature blends is not straightforward. This is illustrated for poly(α‐methyl styrene acrylonitrile)/poly(methyl methacrylate)(PαMSAN/PMMA), a slightly incompatible polymer pair. Interfacial tension has been measured with three different techniques: small‐amplitude oscillatory shear, recovery after elongation, and elongation of a multilayer sample. The large differences in these results can be attributed to the fact that most experimental techniques determine an apparent value, rather than the thermodynamic equilibrium value, of the interfacial tension. The latter is only obtained if the measurement is performed under quiescent conditions on a system that is composed of the coexisting PαMSAN‐rich and PMMA‐rich phases. The apparent interfacial tension depends on the actual composition of the phases and on the deformation of the interface. An order of magnitude approximation for such effects has been derived from theoretical considerations. Finally, each of these apparent values can be of practical importance. If a blend is prepared by melt mixing of the pure polymers, a high apparent value of interfacial tension should be considered. If, however, a blend is prepared by phase separation of a homogeneous mixture, the thermodynamic value is important. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 679–690, 2002  相似文献   

15.
In our previous work (Macromolecules 2004, 37:2930), we found that the hydrophobic blocks of polyacrylamide modified with 2‐phenoxylethyl acrylate (POEA) and anionic surfactant sodium dodecyl sulfate (SDS) may form mixed associations at octane/water interface. However, the process involving the exchange of surfactant molecules between monomers and mixed associations in interface is so fast that we cannot obtain its characteristic time. In this article, the interfacial dilational viscoelastic properties of another hydrophobically associating block copolymer composed of acrylamide (AM) and a low amount of 2‐ethylhexyl acrylate (EHA) (<1.0 mol%) at the octane‐water interfaces were investigated by means of oscillating barriers method and interfacial tension relaxation method respectively. The influences of anionic surfactant SDS and nonionic surfactant Triton X‐100 on the dilational viscoelastic properties of 7000 ppm polymer solutions were studied. The results showed that the interaction between P(AM/2‐EHA) and SDS was similar to that of P(AM/POEA) and SDS. Moreover, we got the relaxation characteristic time of the fast process involving the exchange of s Triton X‐100 molecules between monomers and mixed associations.

We also found that the interfacial tension response of hydrophobically associating water‐soluble copolymers to the sinusoidal oscillation of interfacial area at low bulk concentration is as same as that of the typical surfactants: the interfacial tension decreases with the decrease of interfacial area because of the increase of interfacial active components. However, the interfacial tension increases with the decrease of interfacial area at 7000 ppm P(AM/2‐EHA), which is believed to be correlative with the structure of absorbed film. The results of another hydrophobically associating polymer P(AM/POEA) and polyelectrolyte polystyrene sulfonate (PSS) enhanced our supposition. The phase difference between area oscillation and tension oscillation has also been discussed considering the apparent negative value.  相似文献   

16.
The kinetics and mechanism of the photoinitiated polymerization of 1,6‐hexanediol dimethacrylate (HDDMA) in a poly(methyl methacrylate) (PMMA) matrix were studied. The maximum double‐bond conversion, the maximum polymerization rate, the intrinsic reactivity, and the kinetic constants for propagation and termination were calculated. For this system, a reaction‐diffusion termination mechanism occurred from the start of the polymerization, and it was predominantly maintained until high monomer concentrations, probably because of the relatively high intermolecular attraction force between the PMMA matrix and HDDMA monomer. In addition, a comparative study of the photoinitiated polymerization of methacrylic monomers in four different polymeric matrices [styrene–butadiene–styrene (SBS), polystyrene (PS), polybutadiene (PB), and PMMA] was carried out. The aggregation state, vitreous or rubbery, of the monomer–matrix system and the intermolecular strength of attraction in the monomer–matrix system and growing macroradical and matrix systems were the principal factors influencing the kinetic and mechanistic behavior of these systems. When PB and SBS were used as matrices, crosslinked polymerized products were obtained as a result of the participation of double bonds of the matrix in the polymerization process (copolymerization). PS sequences in the SBS and PS matrices also took part in the polymerization process through the coupling of the benzylic radical to the growing macroradical. © 2001 John Wiley & Sons, Inc. J Polym Sci Part A: Polym Chem 40: 120–127, 2002  相似文献   

17.
In this study, polystyrene‐block‐poly(2‐vinylpyridine), PS‐b‐P2VP, polyisoprene‐block‐poly(2‐vinylpyridne), PI‐b‐P2VP and poly(methyl metacrylate)‐block‐poly(2‐vinylpyridine), PMMA‐b‐P2VP, coordinated to Cr metal were synthesized and characterized by Fourier transform infrared, transmission electron microscopy and direct pyrolysis mass spectrometry techniques. Both thermal degradation mechanism and thermal stability of P2VP blocks were affected by the coordination of Cr nanoparticles to nitrogen of pyridine rings. Thermal decomposition of P2VP blocks was started by loss of pyridine units leaving an unsaturated and/or crosslinked polymer backbone that degraded at relatively high temperatures. Incorporation of Cr metal did not noticeably influence thermal behavior of PS and PI blocks. However, increase in thermal stability of PMMA block was detected and associated with inhibition of the interactions between carbonyl groups of MMA chains with nitrogen atom of pyridine ring as a consequence of coordination to metal. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

18.
In this study, graft copolymers with regular graft points containing polystyrene (PS) backbone and poly(methyl methacrylate) (PMMA), poly(tert‐butyl acrylate) (PtBA), or poly (ethylene glycol) (PEG) side chains were simply achieved by a sequential double polymer click reactions. The linear α‐alkyne‐ω‐azide PS with an anthracene pendant unit per chain was produced via atom transfer radical polymerization of styrene initiated by anthracen‐9‐ylmethyl 2‐((2‐bromo‐2‐methylpropanoyloxy)methyl)‐2‐methyl‐3‐oxo‐3‐(prop‐2‐ynyloxy) propyl succinate. Subsequently, the azide–alkyne click coupling of this PS to create the linear multiblock PS chain with pendant anthracene sites per PS block, followed by Diels–Alder click reaction with maleimide end‐functionalized PMMA, PtBA, or PEG yielded final PS‐g‐PMMA, PS‐g‐PtBA or PS‐g‐PEG copolymers with regular grafts, respectively. Well‐defined polymers were characterized by 1H NMR, gel permeation chromatography (GPC) and triple detection GPC. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

19.
The interfacial tensions between polystyrene (PS) and poly(butylene terephthalate)
  • 1 System. name: poly(tetramethylene terephthalate).
  • (PBT), PS/poly(methyl methacrylate) (PMMA), and PBT/PMMA pairs have been obtained by employing the Neumann Triangle method (NT). The results are in good agreement with those obtained by the breaking thread method. For the first time, the NT method was applied to a reactive polymer pair with an in-situ compatibilizer to measure the interfacial tension. We found that the interfacial tension of the PS/PBT system with a small amount of poly(styrene-co-glycidyl methacrylate)
  • 2 System. name of glycidyl: 2,3-epoxypropyl.
  • (PS-GMA) is significantly reduced compared to that without PS-GMA.  相似文献   

    20.
    The bulk and interfacial properties of ternary mixtures with asymmetric amphiphiles (A2B8) in A2 and B2 matrices and in A2 and B10 matrices are investigated by the dissipative particle dynamics type of molecular-dynamics simulations. The monomer concentrations of A2B8(phiA2B8) studied are below the critical micelle concentration (phiA2B8(cmc)) for the formation of micelles in the presence of an adsorbed amphiphilic monolayer at the interface. Macrophase separation from the mixed phase to the segregated state with A-rich and B-rich coexisting phases and the segregation of A2B8 at the interface are thermodynamically gradual but are accompanied by a pronounced stretching and orientation of the constituent chains. The segregation of A2B8 at the interface broadens the interfacial region and reduces the interfacial tension. The chain conformation of the asymmetric amphiphilic molecules and the interfacial properties are dominated by the majority block in the amphiphilic chain and dependent on the composition of the matrix in contact with the majority block. In the A2 and B2 matrices, the B8 blocks in A2B8 chains at the interface resemble a wet brush swollen by short B2 chains. Swelling is responsible for the pronounced stretching and orienting of the amphiphilic chains and the reduced interfacial amphiphile enrichment. At the same interfacial amphiphile excess, however, swollen amphiphiles are more efficient in reducing the interfacial tension than nonswollen amphiphiles.  相似文献   

    设为首页 | 免责声明 | 关于勤云 | 加入收藏

    Copyright©北京勤云科技发展有限公司  京ICP备09084417号