首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 421 毫秒
1.
Thirty‐three polystyrene (PS)/acrylonitrile‐butadiene‐styrene (ABS) and high impact PS/ABS polymer blends with organoclay and copolymer additives were prepared by melt processing using different mixing sequences in order to test the putative capability of clay to perform a compatibilizing role in polymer blends. In general, the addition of clay increased the tensile modulus and had little effect on tensile strength. For the blends studied in this work, the addition of organoclays caused a catastrophic reduction in impact strength, a critical property for commercial viability. The polymer‐blend nanocomposites adopted a structure similar to that for ABS/clay nanocomposites as determined by X‐ray diffraction and transmission electron microscopy. It is suggested that clay reinforcement inhibits energy absorption by craze formation and shear yielding at high strain rates. Simultaneous mixing of the three components provided nanocomposites with superior elongation and energy to failure compared to sequential mixing. The clay pre‐treated with a benzyl‐containing surfactant gave the best overall properties among the various organoclays tested and of the two clay contents studied 4 wt % was preferred over 8 wt % addition. © 2011 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

2.
Polystyrene (PS) and poly(methyl methacrylate) (PMMA) mixed polymer brushes on the surface of clay layers were prepared by using in situ free radical polymerization. Free radical initiator molecules with two quaternary ammonium groups at both ends were intercalated into the interlayer spacing of clay layers. The amount of polymer brushes grafted on the surface of clay layers can be controlled by controlling the polymerization time. Thermogravimetric analysis, X‐ray diffraction, and high‐resolution transmission electron microscope results indicated successful preparation of the mixed polymer brushes on the surface of clay layers. The kinetics of the grafting of the monomers was also studied. The mixed polymer brushes on the surface of clay layers were used as compatibilizers in blends of PS and PMMA. In the blends, the intercalated clay particles tend to locate at the interface of two phases reducing the interfacial tension. In the meanwhile, PMMA homopolymer chains tend to intercalate into clay layers. The driving force for the intercalation is the compatibility between homo‐PMMA chains and PMMA brushes on the surface of clay layers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5329–5338, 2007  相似文献   

3.
The properties of polypropylene composites can be tailored through the use of nanoclay fillers. The effectiveness of a metallocene‐catalyzed hydroxyl‐functional polypropylene in the compatibilization of polypropylene layered nanosilicate composites was studied, and the results were compared with those for a commercial maleic anhydride functionalized polypropylene. Polypropylene/organoclay nanocomposites were prepared by melt blending, and two polypropylene/compatibilizer/organoclay ratios, 90/5/5 and 70/20/10, were characterized. The organomodification of the clay was carried out with octadecylamine and N‐methylundecenylamine. The structure of the layered silicate was studied by transmission electron microscopy, wide‐angle X‐ray scattering, and small‐angle X‐ray scattering. The fracture surfaces of the composites and thus the efficiency of the compatibilizers to penetrate the galleries of the organoclays were characterized by scanning electron microscopy, and the melt viscosity was studied by stress‐controlled rotational rheometry. The nanostructure was observed with both alkyl amines used for intercalation. The fillers facilitated the processability of all the composites, consisting of equal amounts of compatibilizer and organoclay filler and, in some of the composites, containing twice as much compatibilizer as organoclay filler. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 1892–1903, 2005  相似文献   

4.
Blends were synthesized via the melt blending of a thermotropic liquid‐crystalline polymer (TLCP) and a poly(butylene terephthalate) (PBT) hybrid containing 2 wt % organoclay. A TLCP was also synthesized with side groups based on a nematic liquid‐crystalline phase. The blends of TLCPs with PBT hybrids were melt‐spun with different concentrations of the liquid‐crystalline polymer and different draw ratios (DRs) to produce monofilaments. Regardless of the TLCP concentration in the hybrids, transmission electron microscopy photographs proved that the clay layers of the organoclay were intercalated and partially exfoliated in the PBT matrix. At DR = 1, the maximum enhancement in the ultimate tensile strength was observed for blends containing 8% TLCP, and the tensile strength decreased with further increases in the TLCP concentration. The initial modulus monotonically increased with increasing TLCP concentration. When DR increased from 1 to 44, the increased stretching caused the tensile property to decrease significantly, debonding to occur, and voids to form. These trends with increasing DR were observed in all the systems. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3667–3676, 2004  相似文献   

5.
Poly(ethylene terephthalate‐co‐ethylene naphthalate) (PETN)/organoclay was synthesized with the solution intercalation method. Hexadecylamine was used as an organophilic alkylamine in organoclay. Our aim was to clarify the intercalation of PETN chains to hexadecylamine–montmorillonite (C16–MMT) and to improve both the thermal stability and tensile property. We found that the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PETN/C16–MMT hybrid films. Maximum enhancement in both the ultimate tensile strength and initial modulus for the hybrids was observed in blends containing 4 wt % C16–MMT. Below a 4 wt % clay loading, the clay particles could be highly dispersed in the polymer matrix without a large agglomeration of particles. However, an agglomerated structure did form in the polymer matrix at a 6 wt % clay content. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 2581–2588, 2001  相似文献   

6.
Organoclays with various contents of hydroxyl groups and absorbed ammonium were prepared and compounded with poly(ethylene terephthalate) (PET), forming PET/clay nanocomposites via melt extrusion. Dilute solution viscosity techniques were used to evaluate the level of molecular weight of PET/clay nanocomposites. Actually, a significant reduction in PET molecular weight was observed. The level of degradation depended on both the clay structure and surfactant chemistry in organoclays. The composites, based on clay with larger amount of hydroxyl groups on the edge of clay platelets, experienced much more degradation, because the hydroxyl groups acted as Brønsted acidic sites to accelerate polymer degradation. Furthermore, organoclays with different amounts of absorbed ammonium led to different extents of polymer degradation, depending upon the acidic sites produced by the Hofmann elimination reaction of ammonium. In addition, the composite with better clay dispersion state, which was considered as an increasing amount of clay surface and ammonium exposed to the PET matrix, experienced polymer degradation more seriously. To compensate for polymer degradation during melt extrusion, pyromellitic dianhydride (PMDA) was used as chain extender to increase the intrinsic viscosity of polymer matrix; more importantly, the addition of PMDA had little influence on the clay exfoliation state in PET/clay nanocomposites.  相似文献   

7.
Poly(methyl methacrylate) (PMMA)–polystyrene (PS) composite polymer particles were synthesized in the presence of a surfactant by two‐stage seeded emulsion polymerization. The first stage was the synthesis of PMMA particles by soapless emulsion polymerization; the second stage was the synthesis of the PMMA–PS composite polymer particles with the PMMA particles as seeds. In the second stage of the reaction, three kinds of surfactants—sodium laurate sulfate (SLS), polyoxyethylene (POE) sorbitan monolaurate (Tween 20), and sorbitan monolaurate (Span 20)—were used to synthesize the PMMA–PS composite particles. Both the properties and concentrations of the surfactants influenced the morphology of the composite particles significantly. Core–shell composite particles, with PS as the shell and PMMA as the core, were synthesized in the presence of a low concentration of the hydrophilic surfactant SLS. This result was the same as that in the absence of the surfactant. However, a low concentration of Tween 20 led to composite particles with a core/strawberry‐like shell morphology; the core region was a PS phase, and the strawberry‐like shell was a PS phase dispersed in a PMMA phase. With an increase in the concentration of SLS, the morphology of the composite particles changed from core (PMMA)–shell (PS) to core (PS)–shell (PMMA). Moreover, the effects of a high concentration of Tween 20 or Span 20 on the morphology of the PMMA–PS composite particles were investigated in this study. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 2224–2236, 2005  相似文献   

8.
The properties of polyurethane (PU) nanocomposites with three different organoclays were compared in terms of their thermal stabilities, mechanical properties, morphologies, and gas permeabilities. Hexadecylamine–montmorillonite, dodecyltrimethyl ammonium–montmorillonite, and Cloisite 25A were used as organoclays for making PU hybrid films. The properties were examined as a function of the organoclay content in a matrix polymer. Transmission electron microscopy photographs showed that most clay layers were dispersed homogeneously into the matrix polymer on the nanoscale, although some particles of clay were agglomerated. Moreover, the addition of only a small amount of organoclay was enough to improve the thermal stabilities and mechanical properties of PU hybrid films, whereas gas permeability was reduced. Even polymers with low organoclay contents (3–4 wt %) showed much higher strength and modulus values than pure PU. Gas permeability was reduced linearly with an increasing amount of organoclay in the PU matrix. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 670–677, 2002; DOI 10.1002/polb.10124  相似文献   

9.
The thermomechanical properties, morphology, and gas permeability of hybrids prepared with three types of organoclays were compared in detail. Hexadecylamine–montmorillonite (C16–MMT), dodecyltrimethyl ammonium bromide–montmorillonite (DTA‐MMT), and Cloisite 25A were used as organoclays in the preparation of nanocomposites. From morphological studies using transmission electron microscopy, most clay layers were found to be dispersed homogeneously in the matrix polymer, although some clusters or agglomerated particles were also detected. The initial degradation temperature (at a 2% weight loss) of the poly(lactic acid) (PLA) hybrid films with C16–MMT and Cloisite 25A decreased linearly with an increasing amount of organoclay. For hybrid films, the tensile properties initially increased but then decreased with the introduction of more of the inorganic phase. The O2 permeability values for all the hybrids for clay loadings up to 10 wt % were less than half the corresponding values for pure PLA, regardless of the organoclay. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 94–103, 2003  相似文献   

10.
By Friedel‐Crafts alkylation reaction, catalyzed by a Lewis acid of anhydrous aluminum chloride (AlCl3), binary polymer blends of polypropylene (PP)/polystyrene (PS) with volume proportion of 80/20 were in situ compatiblized and prepared in an XSS‐30 melt mixer at 210 °C. The linear viscoelastic characteristics of the blends were investigated by checking the variations of storage modulus, loss modulus, complex modulus, and complex viscosity of the in situ compatiblized blends, which were dependent on AlCl3 content. In addition, Han plots of the in situ compatiblized blends with different AlCl3 content were also used to characterize the linear viscoelastic properties of the blends. The results showed that both the dynamic rheological parameters and the Han plots were obviously influenced by the rheological properties of the matrix and slightly influenced by the rheological properties of the dispersed phase. Further investigations revealed that phase geometry contributions to the dynamic rheological parameters of the blends could be ignored in comparison with the contributions of the components and the interfacial modification, which were defined and obtained according to log‐linear‐additivity rule. The linear viscoelastic characteristics of the blends were mainly controlled by the combination of the effects of interfacial modification between phases and the rheological properties of the matrix. Storage modulus is the most sensitive dynamic rheological parameter to characterize the interfacial compatiblization effects in the in situ compatiblized binary polymer blends with rheological properties of components variable. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1349–1362, 2010  相似文献   

11.
Monodisperse size colloidal particles varying in chemical composition were synthesized by emulsifier‐free emulsion polymerization. Using a stress‐controlled rheometer, the rheological behavior of colloidal suspensions in a low molecular weight liquid polysulfide was investigated. All suspensions exhibited shear thinning behavior. The shear viscosity, dynamic moduli, and yield stress increased as interactions between particles and matrix increased. The rheological properties associated with network buildup in the suspensions were sensitively monitored by a kinetic recovery experiment. We propose that interfacial interactions by polar and hydrogen bonding between particles and matrix strongly promote affinity of matrix polymer to the filler particles, resulting in adsorption or entanglement of polymer chains on the filler surface. A network structure was formed consisting of particles with an immobilized polymer layer on the particle surface with each particle floc acting as a temporary physical crosslinking site. As the interfacial interaction increases, the adsorbed layer thickness on the filler particles, hence, the effective particle volume fraction, increases. As a result, the rheological properties were enhanced in the order PS < PMMA < PSVP. © 1999 John Wiley & Sons, Inc. J Polym Sci B: Polym Phys 37: 815–824, 1999  相似文献   

12.
In current study, a real‐time rheological method was used to investigate the intercalation and exfoliation process of clay in high‐density polyethylene/organoclay (HDPE/OMMT) nanocomposites using maleic anhydride grafted polyethylene (PEgMA) as compatibilizer. To do this, a steady shear was applied to the original nonintercalated or slightly intercalated composites prepared via simple mixing. The moduli of the composites were recorded as a function of time. The effect of matrix molecular weight and the content of compatibilizer on the modulus were studied. The role of the compatibilizer is to enhance the interaction between OMMT and polymer matrix, which facilitates the dispersion, intercalation, and exfoliation of OMMT. The matrix molecular weight determines the melt viscosity and affects the shear stress applied to OMMT platelets. Based on the experimental results, different exfoliation processes of OMMT in composites with different matrix molecular weight were demonstrated. The slippage of OMMT layers is suggested in low‐molecular weight matrix, whereas a gradual intercalation process under shear is suggested in high‐molecular weight matrix. Current study demonstrates that real‐time rheological measurement is an effective way to investigate the dispersion, intercalation, and exfoliation of OMMT as well as the structural change of the matrix. Moreover, it also provides a deep understanding for the role of polymer matrix and compatibilizer in the clay intercalation process. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 302–312, 2010  相似文献   

13.
The fabrication of syndiotactic polystyrene (sPS)/organoclay nanocomposite was conducted via a stepwise mixing process with poly(styrene‐co‐vinyloxazolin) (OPS), that is, melt intercalation of OPS into organoclay followed by blending with sPS. The microstructure of nanocomposite mainly depended on the arrangement type of the organic modifier in clay gallery. When organoclays that have a lateral bilayer arrangement were used, an exfoliated structure was obtained, whereas an intercalated structure was obtained when organoclay with a paraffinic monolayer arrangement were used. The thermal and mechanical properties of sPS nanocomposites were investigated in relation to their microstructures. From the thermograms of nonisothermal crystallization and melting, nanocomposites exhibited an enhanced overall crystallization rate but had less reduced crystallinity than a matrix polymer. Clay layers dispersed in a matrix polymer may serve as a nucleating agent and hinder the crystal growth of polymer chains. As a comparison of the two nanocomposites with different microstructures, because of the high degree of dispersion of its clay layer the exfoliated nanocomposite exhibited a faster crystallization rate and a lower degree of crystallinity than the intercalated one. Nanocomposites exhibited higher mechanical properties, such as strength and stiffness, than the matrix polymer as observed in the dynamic mechanical analysis and tensile tests. Exfoliated nanocomposites showed more enhanced mechanical properties than intercalated ones because of the uniformly dispersed clay layers. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1685–1693, 2004  相似文献   

14.
In this paper a polypropylene (PP) resin with controlled rheology was selected as polymer matrix and modified by melt mixing with polystyrene (PS) which has certain processing compatibility with PP. The effect of the addition of polyperoxide (PPX), peroxide modified PS particles (PS‐PPX), and maleic anhydride (MAH) to the PP/PS blend during melt mixing on the rheological behavior and morphology of the PP/PS blends has been carefully studied.  相似文献   

15.
Nylon‐6/glass‐fiber (GF)/liquid‐crystalline‐polymer (LCP) ternary blends with different viscosity ratios were prepared with three kinds of nylon‐6 with different viscosities as matrices. The rheological behaviors of these blends were characterized with capillary rheometry. The morphology was observed with scanning electron microscopy and polarizing optical microscopy. This study showed that although LCP did not fibrillate in binary nylon‐6/LCP blends, LCP fibrillated to a large aspect ratio in some ternary blends after GF was added. The addition of 5 wt % LCP significantly reduced the melt viscosity of nylon‐6/GF blends to such an extent that some nylon‐6/GF/LCP blends had quite low viscosities, not only lower than those of neat resins and nylon‐6/GF blends but also lower than those of corresponding nylon‐6/LCP blends. The mutual influence of the morphology and rheological properties was examined. The great reduction of the melt viscosity was considered the result of LCP fibrillation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1619–1627, 2004  相似文献   

16.
The unique rheological properties of a thermotropic liquid‐crystalline polymer (TLCP) were first studied. The thermal and shear history of the TLCP was found to play a critical role in its rheological properties. Crystallites were observed in the TLCP melt even above the melting temperature detected by differential scanning calorimetry. Because interfacial slip had long been suggested as an important reason for viscosity reduction in TLCP/thermoplastic blends, for the first time, interfacial slip at the TLCP/poly(ethylene naphthalate) (PEN) interface was investigated with an energy model. The model quantified the degree of interfacial slip at the TLCP/PEN interface by an energy factor. The calculated energy factors revealed a high degree of interfacial slip at the TLCP/PEN interface. It was proposed that the high rigidity of rodlike TLCP chains and their alignment parallel to the interface prevented mutual entanglements at the TLCP/PEN interface. The lack of mutual entanglements promoted the interfacial slip. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 302–315, 2004  相似文献   

17.
To monitor polymer–polymer coupling reactions between two different monofunctional polymers in dilute polymer blends, fluorescence‐labeled anhydride‐functional polystyrene (PS) and poly(methyl methacrylate) (PMMA) were prepared by conventional anionic polymerization. Sequential trapping of lithiopolystyrene by 1‐(2‐anthryl)‐1‐phenylethylene (APE) and then di‐t‐butyl maleate (4) provided, after pyrolysis, anhydride‐functional fluorescent PS. Fluorescent PMMA anhydride (8) was synthesized with sec‐butyllithium/APE as an initiator for the anionic polymerization of methyl methacrylate, trapping by 4, and pyrolysis. These polymers could be reacted with amine‐functional polymers by melt blending, and the reaction progress could be monitored by gel permeation chromatography coupled with fluorescence detection. This technique not only allows monitoring of the coupling reaction with high sensitivity (ca. 100 times more sensitive than refractive index detection) but also permits selective detection because unlabeled polymers are invisible to fluorescence detection. This highly sensitive and selective detection methodology was also used to monitor the coupling reaction of 8 with PS‐NH2 at a thin‐film interface, which was otherwise difficult to detect by conventional methods. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 2177–2185, 2000  相似文献   

18.
In this study, clay and/or graphite particles have been added in various quantities to polypropylene matrix by melt blending. The morphology and more particularly the dispersion of particles in these composites have been compared by transmission electron microscopy (TEM). Their thermal stability has also been studied by thermogravimetric analysis (TGA). The experimental results reveal that the addition of 5 wt % of graphite particles or clay improves the thermal stability in air of the matrix by about 50 and 90 °C, respectively. In a second step, these blends have been melt‐spun to produce multifilament yarns. The experiments have shown that the addition of graphite particles up to 5 wt % do not reduce the spinnability of the polypropylene, while the incorporation of more than 1 wt % of clay was causing difficulties for the spinning and more particularly for the drawing step. However, a slight improvement of the Young's modulus of the filaments reinforced with 1 wt % of Cloisite®15A is observed when the filaments are drawn up. The flammability of the different blends used as knitted fabrics has finally been evaluated with a mass loss calorimeter at 35 kW/m2. An atypical behavior has been highlighted for all blends and will be discussed. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1185–1195, 2010  相似文献   

19.
Copper nanowire (CuNWs)/polystyrene (PS) composites were prepared by melt mixing using unfunctionalized and functionalized nanowires. Alkanethiols were utilized to modify the surface of CuNWs postsynthesis and enable their dispersion in a polymer melt. Unfunctionalized nanowires decreased the electrical resistivity of PS by nine orders of magnitude with 2.0 vol % Cu, and resulted in composites with a viscoelastic behavior dominated by polymer–polymer networks indicating that electrical percolation occurred without a transition from liquid‐like to solid‐like behavior (i.e., rheological percolation). Results from transmission electron microscopy (TEM), scanning electron microscopy (SEM), and melt rheology characterization indicated that surface modification of CuNWs contributed to the dispersion of the nanofiller in the polymer matrix. CuNWs functionalized with 1‐octanethiol and 1‐butanethiol produced rheological percolation and a gradual decrease in the electrical resistivity of the PS nanocomposites with increasing concentration of nanowires. Polymer nanocomposites with low concentrations of functionalized nanowires showed lower complex viscosities than pure PS; this was attributed to a plasticizing effect introduced by the alkanethiols. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2064–2078, 2008  相似文献   

20.
The preparation, characterization, and properties of the new thermoplastic vulcanizate (TPV)/organoclay nanocomposites are reported in this article. The nanocomposites were prepared by the melt intercalation method. The organoclay was first treated with glycidyl methacrylate, which acts as a swelling agent for organoclays, as well as a grafting agent for TPV (in the presence of dicumyl peroxide) during the melt mixing. The nanocomposite was intercalated, as evidenced by X‐ray diffraction. The tensile modulus of the 5% TPV/organoclay nanocomposite was higher than that of the 20% talc‐filled microcomposite. The storage modulus of the nanocomposite was higher than that of the pristine TPV. The most important observation is obtained from dynamic mechanical analysis, which reveals that the glass‐transition temperature of the polypropylene phase of the nanocomposite increases (as compared to virgin TPV), whereas the ethylene–propylene–diene monomer phase remains almost the same. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 2900–2908, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号