首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
We report the magnetization, specific heat, and transport measurements of a high quality Na(0.85)CoO2 single crystal in applied magnetic fields up to 14 T. At high temperatures, the system is in a paramagnetic phase. It undergoes a magnetic phase transition below approximately 20 K. For the field H||c, the measurement data of magnetization, specific heat, and magnetoresistance reveal a metamagnetic transition from an antiferromagnetic state to a quasiferromagnetic state at about 8 T at low temperatures. However, no transition is observed in the magnetization measurements up to 14 T for H perpendicular c. The low temperature magnetic phase diagram of Na(0.85)CoO2 is determined.  相似文献   

2.
The phase diagram of the quasi-two-dimensional antiferromagnet BaNi(2)V(2)O(8) is studied by specific heat, thermal expansion, magnetostriction, and magnetization for magnetic fields applied perpendicular to c. At micro(o)H* approximately 1.5 T, a crossover to a high-field state, where T(N)(H) increases linearly, arises from a competition of intrinsic and field-induced in-plane anisotropies. The pressure dependences of T(N) and H* are interpreted using the picture of a pressure-induced in-plane anisotropy. Even at zero field and ambient pressure, in-plane anisotropy cannot be neglected, which implies deviations from pure Berezinskii-Kosterlitz-Thouless behavior.  相似文献   

3.
王日兴  叶华  王丽娟  敖章洪 《物理学报》2017,66(12):127201-127201
在理论上研究了垂直自由层和倾斜极化层自旋阀结构中自旋转移矩驱动的磁矩翻转和进动.通过线性展开包括自旋转移矩项的Landau-Lifshitz-Gilbert方程并使用稳定性分析方法,得到了包括准平行稳定态、准反平行稳定态、伸出膜面进动态以及双稳态的磁性状态相图.发现通过调节电流密度和外磁场的大小可以实现磁矩从稳定态到进动态之间的转化以及在两个稳定态之间的翻转.翻转电流随外磁场的增加而增加,并且受自旋极化方向的影响.当自旋极化方向和自由层易磁化轴方向平行时,翻转电流最小;当自旋极化方向和自由层易磁化轴方向垂直时,翻转电流最大.通过数值求解微分方程,给出了不同磁性状态磁矩随时间的演化轨迹并验证了相图的正确性.  相似文献   

4.
The magnetization, M(H< or =30 T,0.7< or =T< or =300 K), of (C5H12N)2CuBr4 has been used to identify this system as an S = 1/2 Heisenberg two-leg ladder in the strong-coupling limit, J( perpendicular) = 13.3 K and J( parallel) = 3.8 K, with H(c1) = 6.6 T and H(c2) = 14.6 T. An inflection point in M(H,T = 0.7 K) at half saturation, M(s)/2, is described by an effective XXZ chain. The data exhibit universal scaling behavior in the vicinity of H(c1) and H(c2), indicating that the system is near a quantum critical point.  相似文献   

5.
The quantum states of carriers in 2D doubly periodic n-type semiconducting superlattices without spatial inversion symmetry in an external magnetic field are calculated in the one-electron approximation. It is shown that the spin-orbit interaction and spin splitting in the magnetic field may lead to the occurrence of the photovoltaic effect in a 2D electron gas without an inversion center and to a nonzero spin magnetization of the electron gas in the plane perpendicular to the magnetic field.  相似文献   

6.
We report 115In nuclear magnetic resonance (NMR) measurements in CeCoIn5 at low temperature (T approximately 70 mK) as a function of the magnetic field (H0) from 2 to 13.5 T applied perpendicular to the c axis. A NMR line shift reveals that below 10 T the spin susceptibility increases as sqrt[H0]. We associate this with an increase of the density of states due to the Zeeman and Doppler-shifted quasiparticles extended outside the vortex cores in a d-wave superconductor. Above 10 T a new superconducting state is stabilized, possibly the modulated phase predicted by Fulde, Ferrell, Larkin, and Ovchinnikov. This phase is clearly identified by a strong and linear increase of the NMR shift with the field, before a jump at the first order transition to the normal state.  相似文献   

7.
Cantilever magnetometry has been used to measure the upper critical magnetic field H(c2) of the quasi-one-dimensional molecular organic superconductor (TMTSF)2ClO4. From simultaneous resistivity and torque magnetization experiments conducted under precise field alignment, H(c2) at low temperature is shown to reach 5 T, nearly twice the Pauli paramagnetic limit imposed on spin singlet superconductors. These results constitute the first thermodynamic evidence for a large H(c2) in this system and provide support for spin triplet pairing in this unconventional superconductor.  相似文献   

8.
张林  汪军 《中国物理 B》2011,20(12):127203-127203
We theoretically study the persistent currents flowing in a Rashba quantum ring subjected to the Rashba spin-orbit interaction. By introducing uniform or nonuniform magnetization into the ring, we find that a nonzero persistent charge current circulates in the ring, which stems from the original equilibrium spin current due to the Rashba spin-orbit interaction. Because of broken time reversal symmetry, the two oppositely flowing spin-up and spin-down charge currents of the equilibrium spin current are no longer equal, and so a net persistent charge current can flow in the system. It is also found that the persistent current can be modulated by the Fermi energy, the Rashba spin-orbit interaction strength and the magnetization in the ring. Moreover, the magnetization perpendicular to the ring plane can optimize the current. The persistent current flowing in the ring is a manifestation of the nonzero equilibrium spin current existing in the ring.  相似文献   

9.
Elastic and inelastic neutron scattering experiments have been performed on the dimer spin system NH4CuCl3, which shows plateaus in the magnetization curve at m=1/4 and m=3/4 of the saturation value. Two structural phase transitions at T1 approximately 156 K and at T(2)=70 K lead to a doubling of the crystallographic unit cell along the b direction and as a consequence a segregation into different dimer subsystems. Long-range magnetic ordering is reported below T(N)=1.3 K. The magnetic field dependence of the excitation spectrum identifies successive quantum phase transitions of the dimer subsystems as the driving mechanism for the unconventional magnetization process in agreement with a recent theoretical model.  相似文献   

10.
Studies of magnetization, magnetoresistance, and magnetic oscillations in semiconductor-multiferroics Eu(1-x)Ce(x)Mn2O5 (x = 0.2-0.25) (ECMO) at temperatures ranging from 5 to 350 K in magnetic fields up to 6 T are presented. It is shown that phase separation and charge carrier self-organization in the crystals give rise to a layered superstructure perpendicular to the c axis. An effect of magnetic field cycling on the superstructure, magnetization, and magnetoresistance is demonstrated. X-ray diffraction studies of ECMO demonstrating the effect of magnetic field on the superstructure are presented. The de Haas-van Alphen magnetization oscillations in high magnetic fields and the temperature-induced magnetic oscillations in a fixed magnetic field are observed at low temperatures. Below 10 K the quantum corrections to magnetization due to the weak charge carrier localization in 2D superlattice layers occur. It is shown that at all the temperatures the Eu(1-x)Ce(x)Mn2O5 magnetic state is dictated by superparamagnetism of isolated ferromagnetic domains.  相似文献   

11.
The magnetic anisotropy of ferromagnetic (FM) Ni, Co, and Fe polycrystalline thin films grown on antiferromagnetic (AF) FeF(2)(110) epitaxial layers was studied, as a function of temperature, using ferromagnetic resonance. In addition to an in-plane anisotropy in the FM induced by fluctuations in the AF short-range order, a perpendicular (biquadratic) magnetic anisotropy, with an out-of-plane component, was found which increased with decreasing temperature above the AF Neél temperature (T(N) = 78.4 K). This is a surprising result given that the AF's uniaxial anisotropy axis was in the plane of the sample, but is consistent with prior experimental and theoretical work. The resonance linewidth had a strong dependence on the direction of the external magnetic field with respect to in-plane FeF(2) crystallographic directions, consistent with interface magnon scattering due to defect-induced demagnetizing fields. Below T(N), the exchange bias field H(E) measured via FMR for the Ni sample was in good agreement with H(E) determined from magnetization measurements if the perpendicular out-of-plane anisotropy was taken into account. A low field resonance line normally observed at H ≈ 0, associated with domain formation during magnetization in ferromagnets, coincided with the exchange bias field for T < T(N), indicating domain formation with the in-plane FM magnetization perpendicular to the AF easy axis. Thus, biquadratic FM-AF coupling is important at temperatures below and above T(N).  相似文献   

12.
We report measurements of the anisotropy of the spin echo decay for the inner layer Cu site of the triple layer cuprate Hg(0.8)Re(0.2)Ba(2)Ca(2)Cu(3)O(8) (T(c)=126 K). The angular dependence of the second moment (T(-2)(2M) identical with ) deduced from the decay curves indicates that T(-2)(2M) for H0 parallel c is enhanced in the pseudogap regime below T(pg) approximately 170 K, as seen in bilayer systems. Comparison of T(-2)(2M) between H0 parallel c and H0 perpendicular c indicates that this enhancement is caused by electron spin correlations between the inner and the outer CuO2 layers. The results provide the answer to the long-standing controversy regarding the opposite T dependences of (T1T)(-1) and T(-2)(2G) (T(2G): Gaussian component) in the pseudogap regime of multilayer systems.  相似文献   

13.
Specific-heat experiments on single crystals of the S = 1 quasi-one-dimensional bond-alternating antiferromagnet Ni(C9H24N4)(NO2)ClO2 (NTENP) have been performed in magnetic fields applied both parallel and perpendicular to the spin chains. We have found for the parallel field configuration that the magnetic specific heat (C(mag)) is proportional to temperature (T) above a critical field H(c), at which the energy gap vanishes, in a temperature region above that of the long-range ordered state. The ratio C(mag)/T increases as the magnetic field approaches H(c) from above. The data are in good quantitative agreement with the prediction of the c= 1 conformal field theory in conjunction with the velocity of the excitations calculated by a numerical diagonalization, providing conclusive evidence for a Tomonaga-Luttinger liquid.  相似文献   

14.
Measurements are reported of the magnetic field dependence of excitations in the quantum critical state of the spin S=1/2 linear chain Heisenberg antiferromagnet copper pyrazine dinitrate (CuPzN). The complete spectrum was measured at k(B)T/J< or =0.025 for H=0 and H=8.7 T, where the system is approximately 30% magnetized. At H=0, the results are in agreement with exact calculations of the dynamic spin correlation function for a two-spinon continuum. At H=8.7 T, there are multiple overlapping continua with incommensurate soft modes. The boundaries of these continua confirm long-standing predictions, and the intensities are consistent with exact diagonalization and Bethe ansatz calculations.  相似文献   

15.
We study the quantum corrections to the oblique propagation of the magnetosonic waves in a warm quantum magnetoplasma composed by mobile ions and electrons. We use a fluid formalism to include quantum corrections due to the Bohm potential and to the spin magnetization energy of electrons. The effects of both quantum corrections are shown in the dispersion relation for perpendicular, parallel and oblique propagation. We find that the quantum contributions to the low frequency depend on the type in the oblique propagation with respect to the background magnetic field. The relevance in astrophysical scenarios is exemplified.  相似文献   

16.
We report detailed measurements of the low temperature magnetic phase diagram of Er2Ti2O7. Heat capacity and time-of-flight neutron scattering studies of single crystals reveal unconventional low-energy states. Er3+ magnetic ions reside on a pyrochlore lattice in Er2Ti2O7, where local XY anisotropy and antiferromagnetic interactions give rise to a unique frustrated system. In zero field, the ground state exhibits coexisting short and long-range order, accompanied by soft collective spin excitations previously believed to be absent. The application of finite magnetic fields tunes the ground state continuously through a landscape of noncollinear phases, divided by a zero temperature phase transition at micro{0}H{c} approximately 1.5 T. The characteristic energy scale for spin fluctuations is seen to vanish at the critical point, as expected for a second order quantum phase transition driven by quantum fluctuations.  相似文献   

17.
We have studied the Zeeman splitting in ballistic hole quantum wires formed in a (311)A quantum well by surface gate confinement. Transport measurements clearly show lifting of the spin degeneracy and crossings of the subbands when an in-plane magnetic field B is applied parallel to the wire. When B is oriented perpendicular to the wire, no spin splitting is discernible up to B = 8.8 T. The observed large Zeeman splitting anisotropy in our hole quantum wires demonstrates the importance of quantum confinement for spin splitting in nanostructures with strong spin-orbit coupling.  相似文献   

18.
We report the first experimental observation of anisotropic magnetocaloric effect (MCE) in the Fe8 clusters. It is found that the magnetic anisotropy plays a very important role in the determination of the magnetocaloric effect. The maximum and minimum MCE's are observed when the applied magnetic fields are parallel and perpendicular to the easy axis, respectively. The quantum spin Hamiltonian of a Fe8 cluster is used to calculate the partition function and the magnetization in a range of temperature and magnetic field. Excellent quantitative agreement between the experimental data and calculation is observed.  相似文献   

19.
The static and dynamic equilibrium states of spins in a thin layer of a conducting nanosized column containing two magnetic layers are analyzed theoretically. The magnetization of one of the layers is assumed to be fixed. The analysis is performed in terms of a macrospin model with allowance for the Slonczewski-Berger torque transfer. Bifurcation diagrams are constructed describing the change of spin states in the current-field plane. The relation of the specific features of varying magnetization and the spin precession frequency to bifurcations in the dynamic system under study is discussed. It is shown that the soft creation of cycles with a zero amplitude is accompanied by precession at a finite frequency and that the precession frequency becomes zero when a cycle with a finite amplitude disappears or arises in a jump. Comparative analysis is performed for two orientations of a magnetic field (parallel and perpendicular to the easy magnetization axis in the layer plane) in the presence of a current with a given spin orientation.  相似文献   

20.
It has recently been suggested that the organic compound NiCl2-4SC(NH2)2 (DTN) undergoes field-induced Bose-Einstein condensation (BEC) of the Ni spin degrees of freedom. The Ni S = 1 spins exhibit three-dimensional XY antiferromagnetism above a critical field H(c1) approximately 2 T. The spin fluid can be described as a gas of hard-core bosons where the field-induced antiferromagnetic transition corresponds to Bose-Einstein condensation. We have determined the spin Hamiltonian of DTN using inelastic neutron diffraction measurements, and we have studied the high-field phase diagram by means of specific heat and magnetocaloric effect measurements. Our results show that the field-temperature phase boundary approaches a power-law H - H(c1) proportional variant T(alpha)(c) near the quantum critical point, with an exponent that is consistent with the 3D BEC universal value of alpha = 1.5.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号