首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
The addition of 10?5 — 2 Torr of NO, a radical scavenger, is found to significantly quench the rate of photonucleation of nonane by NO2 or CH3I in a diffusion cloud chamber. This confirms a recently proposed radical mechanism for the photoinduced nucleation of these systems. The photonucleation rate of nonane induced by o-tolualdehyde (a system whose mechanism is not known) is similarly quenched by the addition of small amounts of NO, suggesting a radical mechanism. A mechanism for this system, based upon the formation of nonane radicals (resulting from hydrogen abstraction from nonane by the carbonyl molecules in the n,π* singlet or triplet state) followed by further reaction of the radicals to form low vapor pressure species, is discussed. Acetone, a system known to dissociate into radicals, is found to photoinduce nucleation of nonane when excited to the lowest singlet or triplet excited states. This adds further support to the proposed radical mechanism and suggests that acetone dissociates in its lowest singlet as well as its lowest triplet state. A theoretical model is outlined in which the production of large involatile alkanes (dimers and higher polymers) are formed from an initially produced nonane radical. These results are combined with binary nucleation theory in order to calculate the effect of these species on the rate of nucleation. These calculations indicate that low concentrations of these involatile species can indeed induce nucleation. The ability of small, photochemically produced polymers to induce nucleation is also examined and the time dependent space distribution of polymers (e.g., vinyl polymers) generated by chain transfer from a single free radical is derived. The small polymers formed in this process are analogous to the species formed in the photoinduced nucleation of alkane vapors.  相似文献   

2.
Gold porphyrins are often used as electron-accepting chromophores in artificial photosynthetic constructs. Because of the heavy atom effect, the gold porphyrin first-excited singlet state undergoes rapid intersystem crossing to form the triplet state. The lowest triplet state can undergo a reduction by electron donation from a nearby porphyrin or another moiety. In addition, it can be involved in triplet-triplet energy transfer interactions with other chromophores. In contrast, little has been known about the short-lived singlet excited state. In this work, ultrafast time-resolved absorption spectroscopy has been used to investigate the singlet excited state of Au(III) 5,15-bis(3,5-di-t-butylphenyl)-2,8,12,18,-tetraethyl-3,7,13,17-tetramethylporphyrin in ethanol solution. The excited singlet state is found to form with the laser pulse and decay with a time constant of 240 fs to give the triplet state. The triplet returns to the ground state with a life-time of 400 ps. The lifetime of the singlet state is comparable with the time constants for energy and photoinduced electron transfer in some model and natural photosynthetic systems. Thus, it is kinetically competent to take part in such processes in suitably designed supermolecular systems.  相似文献   

3.
A series of stable free-base, Zn(II) and Pd(II) bacteriochlorins containing a fused six- or five-member diketo- or imide ring have been synthesized as good candidates for photodynamic therapy sensitizers, and their electrochemical, photophysical, and photochemical properties were examined. Photoexcitation of the palladium bacteriochlorin affords the triplet excited state without fluorescence emission, resulting in formation of singlet oxygen with a high quantum yield due to the heavy atom effect of palladium. Electrochemical studies revealed that the zinc bacteriochlorin has the smallest HOMO-LUMO gap of the investigated compounds, and this value is significantly lower than the triplet excited-state energy of the compound in benzonitrile. Such a small HOMO-LUMO gap of the zinc bacteriochlorin enables intermolecular photoinduced electron transfer from the triplet excited state to the ground state to produce both the radical cation and the radical anion. The radical anion thus produced can transfer an electron to molecular oxygen to produce superoxide anion which was detected by electron spin resonance. The same photosensitizer can also act as an efficient singlet oxygen generator. Thus, the same zinc bacteriochlorin can function as a sensitizer with a dual role in that it produces both singlet oxygen and superoxide anion in an aprotic solvent (benzonitrile).  相似文献   

4.
The synthesis and photochemical characterization of two porphyrin-fullerene dyads, two zinc porphyrin-fullerene dyads, and a carotenobuckminsterfullerene are reviewed. In these molecules, the fullerene first excited singlet state may be formed by direct excitation or by singlet-singlet energy transfer from the attached pigment. In polar solvents, the dominant singlet-state decay pathway is photoinduced electron transfer to yield the pigment radical cation and fullerene radical anion. This charge-separated state has a long lifetime relative to the time constant for charge separation. In toluene, in cases where photoinduced electron transfer is slow for thermodynamic reasons, the fullerene singlet state decays by intersystem crossing, and the resulting triplet energy is partitioned between the components of the dyad according to their triplet energies. The results suggest that fullerenes can be valuable components of photochemically active multicomponent molecular systems.  相似文献   

5.
Phototropin is a blue light-activated photoreceptor that plays a dominant role in the phototropism of plants. The protein contains two subunits that bind flavin mononucleotide (FMN), which are responsible for the initial steps of the light-induced reaction. It has been proposed that the photoexcited flavin molecule adds a cysteine residue of the protein backbone, thus activating autophosphorylation of the enzyme. In this study, the electronic properties of several FMN-related compounds in different charge and spin states are characterized by means of ab initio quantum mechanical calculations. The model compounds serve as idealized model chromophores for phototropism. Reaction energies are estimated for simple model reactions, roughly representing the addition of a cysteine residue to the flavin molecule. Excitation energies were calculated with the help of time-dependent density functional theory. On the basis of these calculations we propose the following mechanism for the addition reaction: (1) after photoexcitation of FMN out of the singlet ground state S0, excited singlet state(s) are populated; these relax to the lowest excited singlet state S1, and subsequently by intersystem crossing FMN in the lowest triplet state, T1 is formed; (2) the triplet easily removes the neutral hydrogen atom from the H-S group of the cysteine residue; and (3) the resulting thio radical is added.  相似文献   

6.
《Chemical physics letters》2006,417(1-3):211-216
Photochemical properties of photoinduced ω-bond dissociation in p-phenylbenzoylbenzyl phenyl sulfide (PPS) having the lowest triplet state (T1) of π,π* character in solution were investigated by time-resolved EPR and laser flash photolysis techniques. PPS was found to undergo photoinduced ω-bond cleavage in the excited lowest singlet state (S1(n,π*)) with a quantum yield (Φrad) of 0.15 for the radical formation, which was independent of excitation wavelengths. Based on the facts of the observation of the absorption spectrum of triplet PPS upon triplet sensitization of xanthone, and absence of CIDEP signal, ω-cleavage was shown to be absent in the T1(π,π*) state of PPS. Considering the electronic character of the excited and dissociative states of PPS, a schematic energy diagram for the ω-bond dissociation of PPS was shown.  相似文献   

7.
The electronic structure of spiro[4.4]nonatetraene 1 as well as that of its radical anion and cation were studied by different spectroscopies. The electron‐energy‐loss spectrum in the gas phase revealed the lowest triplet state at 2.98 eV and a group of three overlapping triplet states in the 4.5 – 5.0 eV range, as well as a number of valence and Rydberg singlet excited states. Electron‐impact excitation functions of pure vibrational and triplet states identified various states of the negative ion, in particular the ground state with an attachment energy of 0.8 eV, an excited state corresponding to a temporary electron attachment to the 2b1 MO at an attachment energy of 2.7 eV, and a core excited state at 4.0 eV. Electronic‐absorption spectroscopy in cryogenic matrices revealed several states of the positive ion, in particular a richly structured first band at 1.27 eV, and the first electronic transition of the radical anion. Vibrations of the ground state of the cation were probed by IR spectroscopy in a cryogenic matrix. The results are discussed on the basis of density‐functional and CASSCF/CASPT2 quantum‐chemical calculations. In their various forms, the calculations successfully rationalized the triplet and the singlet (valence and Rydberg) excitation energies of the neutral molecule, the excitation energies of the radical cation, its IR spectrum, the vibrations excited in the first electronic absorption band, and the energies of the ground and the first excited states of the anion. The difference of the anion excitation energies in the gas and condensed phases was rationalized by a calculation of the Jahn‐Teller distortion of the anion ground state. Contrary to expectations based on a single‐configuration model for the electronic states of 1 , it is found that the gap between the first two excited states is different in the singlet and the triplet manifold. This finding can be traced to the different importance of configuration interaction in the two multiplicity manifolds.  相似文献   

8.
Valence photoisomerization of hexamethyl (Dewar benzene) (HMDB) is sensitized by aromatic singlet photosensitizers 1,4-dicyanobenzene, 1-cyanonaphthalene, 9-cyanoanthracene, and 9,10-dicyanoanthracene with a limiting quantum efficiency of 1.0 in cyclohexane solvent. Quenching of the fluorescence of the aromatic sensitizers leads to exciplex emission which is identical to that obtained by quenching with the isomer, hexamethylbenzene (HMB). The emission is identified as HMB exciplex emission on the basis of relative lifetime and dual quenching experiments. The relative yield of HMDB-derived (“adiabatic”) emission is 20–50% depending on the excitation energy of the HMB exciplex product. Neither biacetyl singlet or triplet nor 1-cyanonaphthalene triplet photosensitization is successful in bringing about isomerization of HMDB. Dimethyl 1,4,5,6-tetramethylbicy-clo[2.20]hexa-2,5-diene-2, 3-dicarboxylate undergoes valence isomerization on quenching electron donor fluorophores, with a quantum efficiency of 0.2. The aromatic valence isomer is not produced in an excited state in this case. Factors which govern the efficiency of adiabatic and diabatic isomerization of the Dewar benzenes are discussed, including sensitizer redox properties, configuration, and multiplicity, the excitation energy and binding characteristics of exciplexes, and the Dewar benzene substituent pattern.  相似文献   

9.
The lowest excited state of aromatic carbonyl compounds (naphthaldehydes, acetonaphthones, and 10-methylacridone) is changed from the n,pi triplet to the pi,pi singlet which becomes lower in energy than the n,pi triplet by the complexation with metal ions such as Mg(ClO(4))(2) and Sc(OTf)(3) (OTf = triflate), which act as Lewis acids. Remarkable positive shifts of the one-electron reduction potentials of the singlet excited states of the Lewis acid-carbonyl complexes (e.g., 1.3 V for the 1-naphthaldehyde-Sc(OTf)(3) complex) as compared to those of the triplet excited states of uncomplexed carbonyl compounds result in a significant increase in the redox reactivity of the Lewis acid complexes vs uncomplexed carbonyl compounds in the photoinduced electron-transfer reactions. Such enhancement of the redox reactivity of the Lewis acid complexes leads to the efficient C-C bond formation between benzyltrimethylsilane and aromatic carbonyl compounds via the Lewis-acid-promoted photoinduced electron transfer. The quantum yield determinations, the fluorescence quenching, and direct detection of the reaction intermediates by means of laser flash photolysis experiments indicate that the Lewis acid-catalyzed photoaddition reactions proceed via photoinduced electron transfer from benzyltrimethylsilane to the singlet excited states of Lewis acid-carbonyl complexes.  相似文献   

10.
The photophysics of two symmetric triads, (ZnP)2PBI and (H2P)2PBI, made of two zinc or free-base porphyrins covalently attached to a central perylene bisimide unit has been investigated in dichloromethane and in toluene. The solvent has been shown to affect not only quantitatively but also qualitatively the photophysical behavior. A variety of intercomponent processes (singlet energy transfer, triplet energy transfer, photoinduced charge separation, and recombination) have been time-resolved using a combination of emission spectroscopy and femtosecond and nanosecond time-resolved absorption techniques yielding a very detailed picture of the photophysics of these systems. The singlet excited state of the lowest energy chromophore (perylene bisimide in the case of (ZnP)2PBI, porphyrin in the case of (H2P)2PBI) is always quantitatively populated, besides by direct light absorption, by ultrafast singlet energy transfer (few picosecond time constant) from the higher energy chromophore. In dichloromethane, the lowest excited singlet state is efficiently quenched by electron transfer leading to a charge-separated state where the porphyrin is oxidized and the perylene bisimide is reduced. The systems then go back to the ground state by charge recombination. The four charge separation and recombination processes observed for (ZnP)2PBI and (H2P)2PBI in dichloromethane take place in the sub-nanosecond time scale. They obey standard free-energy correlations with charge separation lying in the normal regime and charge recombination in the Marcus inverted region. In less polar solvents, such as toluene, the energy of the charge-separated states is substantially lifted leading to sharp changes in photophysical mechanism. With (ZnP)2PBI, the electron-transfer quenching is still fast, but charge recombination takes place now in the nanosecond time scale and to triplet state products rather than to the ground state. Triplet-triplet energy transfer from the porphyrin to the perylene bisimide is also involved in the subsequent deactivation of the triplet manifold to the ground state. With (H2P)2PBI, on the other hand, the driving force for charge separation is too small for electron-transfer quenching, and the deactivation of the porphyrin excited singlet takes place via intersystem crossing to the triplet followed by triplet energy transfer to the perylene bisimide and final decay to the ground state.  相似文献   

11.
The photolysis of a series of 4-X-benzenediazonium tetrafluoroborates is studied in MeCN. Loss of nitrogen occurs from the singlet excited state with X=H, t-Bu, and NMe2 and leads to the singlet aryl cation. This adds to the solvent yielding the corresponding acetanilides. With other substituents, ISC competes with (X=Br, CN) or overcomes (X=COMe, NO2) fragmentation and the aryl cation is formed in part or completely in the triplet state. In neat MeCN, this either abstracts hydrogen from the solvent (in most cases inefficiently) or undergoes intersystem crossing to the more stable singlet that reacts as above. In the presence of pi nucleophiles (allyltrimethylsilane or benzene), the triplet aryl cation is efficiently trapped giving substituted allylbenzenes and biphenyls, respectively. By triplet sensitization by xanthone, the triplet cation and the products from it are obtained from the whole series considered. The direct or sensitized photodecomposition of diazonium fluoroborates, substituted with both electron-donating and -withdrawing substituents, in the presence of alkenes and arenes offers an access to an alternative arylation procedure.  相似文献   

12.
Photochemical properties of photoinduced omega-bond dissociation in p-benzoylbenzyl phenyl sulfide (BBPS) in solution were investigated by time-resolved EPR and laser flash photolysis techniques. BBPS was shown to undergo photoinduced omega-bond cleavage to yield the p-benzoylbenzyl radical (BBR) and phenyl thiyl radical (PTR) at room temperature. The quantum yield (phi(rad)) for the radical formation was found to depend on the excitation wavelength, i.e., on the excitation to the excited singlet states, S2 and S1 of BBPS; phi(rad)(S2) = 0.65 and phi(rad)(S1) = 1.0. Based on the CIDEP data, these radicals were found to be produced via the triplet state independent of excitation wavelength. By using triplet sensitization of xanthone, the efficiency (alpha(rad)) of the C-S bond fission in the lowest triplet state (T1) of BBPS was determined to be unity. The agreement between phi(rad)(S1) and alpha(rad) values indicates that the C-S bond dissociation occurs in the T1 state via the S1 state due to a fast intersystem crossing from the S1 to the T1 state. In contrast, the wavelength dependence of the radical yields was interpreted in terms of the C-S bond cleavage in the S2 state competing with internal conversion from the S2 to the S1 state. The smaller value of phi(rad)(S2) than that of phi(rad)(S1) was proposed to originate from the geminate recombination of singlet radical pairs produced by the bond dissociation via the S2 state. Considering the electronic character of the excited and dissociative states in BBPS showed a schematic energy diagram for the omega-bond dissociation of BBPS.  相似文献   

13.
UV-vis absorption and resonance Raman spectra of the complexes fac-[Re(Cl)(CO)3(stpy)2] and fac-[Re(stpy)(CO)3(bpy)]+ (stpy = t-4-styrylpyridine, bpy = 2,2'-bipyridine) show that their lowest absorption bands are dominated by stpy-localized intraligand (IL) pi pi* transitions. For the latter complex a Re --> bpy transition contributes to the low-energy part of the absorption band. Optical population of the 1IL excited state of fac-[Re(Cl)(CO)3(stpy)2] is followed by an intersystem crossing (< or =0.9 ps) to an 3IL state with the original planar trans geometry of the stpy ligand. This state undergoes a approximately 90 degrees rotation around the stpy C=C bond with a 11 ps time constant. An electronically excited species with an approximately perpendicular orientation of the phenyl and pyridine rings of the stpy ligand is formed. Conversion to the ground state and isomerization occurs in the nanosecond range. Intraligand excited states of fac-[Re(stpy)(CO)3(bpy)]+ show the same behavior. Moreover, it was found that the planar reactive 3IL excited state is rapidly and efficiently populated after optical excitation into the Re --> bpy 1MLCT excited state. A 1MLCT --> 3MLCT intersystem crossing takes place first with a time constant of 0.23 ps followed by an intramolecular energy transfer from the ReI(CO)3(bpy) chromophore to a stpy-localized 3IL state with a 3.5 ps time constant. The fast rate ensures complete conversion. Coordination of the stpy ligand to the ReI center thus switches the ligand trans-cis isomerization mechanism from singlet to triplet (intramolecular sensitization) and, in the case of fac-[Re(stpy)(CO)3(bpy)]+, opens an indirect pathway for population of the reactive 3IL excited state via MLCT states.  相似文献   

14.
Benzil ketyl radicals are generated by laser flash irradiation of benzil in 2-propanol at T = -50 °C and are observed by time-resolved ESR spectroscopy. Their electron spin polarization is found to consist of a fast and slowly rising emissive component. The fast component is due to polarized ketyl radicals formed by a two-photon process from an excited triplet state. The slow one is attributed to ketyl radicals which are generated by a slow photoreduction of benzil in its lowest triplet state. Their emissive polarization stems predominantly from the radical-triplet pair mechanism (RTPM). Rate constants of the relevant processes are determined.  相似文献   

15.
The primary photophysical and photochemical processes in the photochemistry of 1-acetoxy-2-methoxyanthraquinone (1a) were studied using femtosecond transient absorption spectroscopy. Excitation of 1a at 270 nm results in the population of a set of highly excited singlet states. Internal conversion to the lowest singlet npi* excited state, followed by an intramolecular vibrational energy redistribution (IVR) process, proceeds with a time constant of 150 +/- 90 fs. The 1npi* excited state undergoes very fast intersystem crossing (ISC, 11 +/- 1 ps) to form the lowest triplet pipi* excited state which contains excess vibrational energy. The vibrational cooling occurs somewhat faster (4 +/- 1 ps) than ISC. The primary photochemical process, migration of acetoxy group, proceeds on the triplet potential energy surface with a time constant of 220 +/- 30 ps. The transient absorption spectra of the lowest singlet and triplet excited states of 1a, as well as the triplet excited state of the product, 9-acetoxy-2-methoxy-1,10-anthraquinone (2a), were detected. The assignments of the transient absorption spectra were supported by time-dependent DFT calculations of the UV-vis spectra of the proposed intermediates. All of the stationary points for acyl group migration on the triplet and ground state singlet potential energy surfaces were localized, and the influence of the acyl group substitution on the rate constants of the photochemical and thermal processes was analyzed.  相似文献   

16.
The electronic singlet-singlet and singlet-triplet electronic transitions of the isoalloxazine ring of the flavin core are studied using second-order perturbation theory within the framework of the CASPT2//CASSCF protocol. The main features of the absorption spectrum are computed at 3.09, 4.28, 4.69, 5.00, and 5.37 eV. The lowest singlet (S1) and triplet (T1) excited states are found to be both of pi character with a singlet-triplet splitting of 0.57 eV. On the basis of the analysis of the computed spin-orbit couplings and the potential energy hypersurfaces built for the relevant excited states, the intrinsic mechanism for photoinduced population of T1 is discussed. Upon light absorption, evolution of the lowest singlet excited state along the relaxation pathway leads ultimately to the population of the lowest triplet state, which is mediated by a singlet-triplet crossing with a state of npi* type. Subsequently a radiationless decay toward T1 through a conical intersection takes place. The intersystem crossing mechanism and the internal conversion processes documented here provide a plausible route to access the lowest triplet state, which has a key role in the photochemistry of the flavin core ring and is mainly responsible for the reactivity of the system.  相似文献   

17.
1-azacarbazole hydrogen-bonded dimers undergo photoinduced double proton transfer reaction in their lowest excited singlet state. A second emission band with a maximum at 510 nm arises from a tautomer formed in the excited singlet state as a result of the double proton transfer process.  相似文献   

18.
The photoreduction of benzophenone by several substrates has been studied by time-resolved EPR. When cyclohexadiene, MTHF, and decane are employed as hydrogen donors to the excited triplet state of benzophenone the diphenyl ketyl radical which is produced exhibits emissive electron spin polarization with rise times on the order of a few microseconds. It is suggested that the experimental observations can be explained by intersystem crossing to a quartet state in the excited ketyl radical.  相似文献   

19.
Photochemical profiles of omega-cleavage of carbon-X (X = Br and Cl) bonds in m-bromo- and m-chloromethylbenzophenones (m-BMBP and m-CMBP) were investigated by laser photolysis techniques and DFT calculations. m-BMBP and m-CMBP were found to undergo omega-bond cleavage to yield the m-benzoylbenzyl radical (m-BBR) at 295 K, and the quantum yields were determined. No CIDEP signal was detected upon 308 nm laser photolysis of both the compounds. From these observations, it was inferred that the omega-bond of these m-halomethylbenzophenones (m-HMBP) cleaves in the lowest excited singlet state (S(1)(n,pi(*))) upon direct excitation. Upon triplet sensitization of acetone (Ac), the m-BBR formation was observed in transient absorption for an Ac-m-BMBP system, and an efficiency of the C-Br bond cleavage in the lowest triplet state (T(1)(n,pi(*))) of m-BMBP was determined. In contrast, formation of triplet m-CMBP was seen for an Ac-m-CMBP system. Absence of C-Cl bond cleavage in the triplet state of m-CMBP indicated the reactive state of m-CMBP for omega-cleavage is only the S(1)(n,pi(*)) state. Based on the efficiencies and DFT calculations for excited state energies, photoinduced omega-bond dissociation of m- and p-HMBPs was characterized.  相似文献   

20.
The investigations were made on photoinduced electron transfer (ET) from the singlet excited state of rubrene (1RU*) to p-benzoquinone derivatives (duroquinone, 2,5-dimethyl-p-benzoquinone, p-benzoquinone, 2,5-dichloro-p-benzoquinone, and p-chloranil) in benzonitrile (PhCN) by using the steady state and time-resolved spectroscopies. The photoinduced ET produces solvent-separated type charge-separated (CS) species and the charge-recombination (CR) process between RU radical cation and semiquinone radical anions obeys second-order kinetics. Not only the CS species but also the triplet excited state of RU (3RU*) is seen in the transient absorption spectra upon laser excitation of a PhCN solution of RU and p-benzoquinone derivatives. The comparison of their time profiles clearly suggests that the CR process between RU radical cation and semiquinone radical anions to the ground state is independent from the deactivation of 3RU*. This indicates that the CR in a highly exergonic ET occurs at a longer distance with a large solvent reorganization energy, which results in faster ET to the ground state than to the triplet excited state that is lower in energy than the CS state. Photoinduced ET from 3RU* in addition from 1RU* also occurs when p-benzoquinone derivatives with electron-withdrawing substituents were employed as electron acceptors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号