首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Luminescence from aromatic hydrocarbon-olefin and -diene exciplexes, providing strong evidence for their intermediary in singlet quenching processes, is reported. Solvent dependence of the emission maximum gives a value of 10.8D for the dipole moment of the 1-cyanonaphthalene-1,2-dimethylcyclopentene exciplex while the temperature dependence affords a value of 6.7 kcal/M for the heat of formation. Linear-free-energy correlations of rate constants for 1-cyanonaphthalene and naphthalene fluorescence quenching by dienes and olefins and strained hydrocarbons with the adiabatic ionization potentials of the quenchers are consistent with major contributions from charge-resonance in the exciplex formation process.  相似文献   

2.
The lowest excited singlet state of naphthoylnaphthvalene (NNV) undergoes valence isomerization yielding ground-state naphthoylnaphthalene (NN) finally. Neither the lowest excited singlet nor triplet state of NN is formed upon excitation of NNV, and of particular interest in photoinduced NNV→NNV valence isomerization is the existence of an intermediate which is probably either a bond-cloven species or a valence isomer of NNV. The lowest excited triplet state of NNV populated in benzene deactivates to its ground state, but that populated in ethanol abstracts a hydrogen atom from the solvent molecule generating the NNV ketyl radical. Interestingly, this radical also undergoes rapid valence isomerization and recombination of two NN ketyl radicals thus formed yields naphthopinacol. Synthesis of poly-tert-butylpolyacenes, tri-tert-butylisobenzofuran and tri-tert-butylpolyacenequinones, and furthermore, their photoinduced valence isomerization yielding the valene-type isomers as well as related photochromism and photo-electro dualchromism are presented.  相似文献   

3.
Bichromophoric compound 3 beta-((2-(methoxycarbonyl)bicyclo[2.2.1]hepta-2,5-diene-3-yl)carboxy)androst-5-en-17 beta-yl-[2-(N-carbazolyl)acetate] (NBD-S-CZ) was synthesized and its photochemistry was examined by fluorescence quenching, flash photolysis, and chemically induced dynamic nuclear polarization (CIDNP) methods. Fluorescence quenching measurements show that intramolecular electron transfer from the singlet excited state of the carbazole to the norbornadiene group in NBD-S-CZ occurs with an efficiency (Phi SET) of about 14 % and rate constant (kSET) of about 1.6 x 10(7) s-1. Phosphorescence and flash photolysis studies reveal that intramolecular triplet energy transfer and electron transfer from the triplet carbazole to the norbornadiene group proceed with an efficiency (TET + TT) of about 52 % and rate constant (kTET + kTT) of about 3.3 x 10(5) s-1. Upon selective excitation of the carbazole chromophore, nuclear polarization is detected for protons of the norbornadiene group (emission) and its quadricyclane isomer (enhanced absorption); this suggests that the isomerization of the norbornadiene group to the quadricyclane proceeds by a radical-ion pair recombination mechanism in addition to intramolecular triplet sensitization. The long-distance intramolecular triplet energy transfer and electron transfers starting both from the singlet and triplet excited states are proposed to proceed by a through-bond mechanism.  相似文献   

4.
Substituted naphthylacrylates, 1-3, not showing rotamerism have been synthesized with a view to study photochemical E (trans)-->Z (cis) isomerization. Photostationary state composition of the isomers upon direct excitation, triplet sensitized isomerization, quantum yield of isomerization, and steady state and time-resolved fluorescence behavior have been studied for these naphthylacrylates. The direct excitations of the compounds yield high Z (approximately 80%) isomer composition, whereas the triplet sensitization results in less Z (approximately 20%) isomer composition. This indicates that the singlet pathway is very efficient in converting the E isomer to the Z isomer. The naphthylacrylates 1 and 2 exhibit structured fluorescence at room temperature in hexane and upon changing the solvent to CH3CN; the structure of the fluorescence is lost, indicating that the singlet excited-state develops a polar character in a polar environment. The polar nature of the singlet excited state becomes more clear in the case of 3 from its fluorescence solvatochromism. The naphthylacrylates did not exhibit excitation wavelength-dependent fluorescence at room temperature suggesting that the ground state conformers (rotamers) are not involved. Fluorescence lifetimes measured for these compounds displayed biexponential behavior, which is explained using a two-state model.  相似文献   

5.
《Chemical physics》2005,308(1-2):93-102
The absorption and emission spectroscopic behaviour of cyclometalated fac-tris(2-phenylpyridine) iridium(III) [Ir(ppy)3] is studied at room temperature. Liquid solutions, doped films, and neat films are investigated. The absorption cross-section spectra including singlet–triplet absorption, the triplet–singlet stimulated emission cross-section spectra, the phosphorescence quantum distributions, the phosphorescence quantum yields and the phosphorescence signal decays are determined. In neat films fluorescence self-quenching occurs, in diluted solid solution (polystyrene and dicarbazole-biphenyl films) as well as deaerated liquid solution (toluene) high phosphorescence quantum yields are obtained, and in air-saturated liquid solutions (chloroform, toluene, tetrahydrofuran) the phosphorescence efficiency is reduced by triplet oxygen quenching. At intense short-pulse laser excitation the phosphorescence lifetime is shortened by triplet–triplet annihilation. No amplification of spontaneous emission in the phosphorescence spectral region was observed indicating higher excited-state absorption than stimulated emission.  相似文献   

6.
The triplet state of pyrromethene 567, a molecule with potential as a solid state laser dye, has been characterized in benzene by pulse radiolysis in terms of its absorption spectrum, lifetime, self-quenching, electronic excitation energy, triplet–triplet extinction coefficient and oxygen quenching rate constant. The use of laser flash photolysis has then allowed determination of the triplet quantum yield, efficiency of formation of singlet oxygen (1Δg), and the rate constant for reaction of the latter species with the ground state. The affects of oxygen on the fluorescence and triplet yields demonstrate that oxygen-induced intersystem crossing is important, the sum of these parameters being unity within experimental error. The mechanism of reaction of P-567 with 1Δg in benzene is predominantly physical in character with only a small (6%) contribution from chemical reaction.  相似文献   

7.
Optic—acoustic measurements have been employed in the determination of absolute quantum yields for benzene and naphthalene. Heat yields are measured by a method using oxygen quenching of both triplet and singlet states. For vibrationally relaxed excited singlet states the fluorescence quantum yields, φBf, are 0.16 ± 0.02 and 0.79 ± 0.02 for benzene and naphthalene respectively. For 0.07 torr naphthalene at room temperature with 248 nm excitation, φf = 0.35 ± 0.03 and the quantum yield of internal conversion is less than 0.05. The decay of the highly vibrationally excited triplet state is dominated by vibrational relaxation for 0.07 torr naphthalene, but for benzene, even at high pressures, strong competition comes from an indirect coupling process to the ground state.  相似文献   

8.
Adiabatic potential-energy surfaces in the lower excited states following the benzene?Dewar–benzene isomerization process were calculated by the INDO /S method postulating the concerted reaction mechanism which is proved to be valid in the ground state by the calculation of the intrinsic reaction coordinate. It was concluded that the benzene molecule in the 1B1u and 1E2u excited states readily isomerizes to Dewar–benzene in the condensed phase although the quantum yield may not be large. Bryce-Smith's proposal, that the isomerization to Dewar–benzene occurs only after the intersystem crossing to the 3B1u state in benzene molecule, will not be probable; for the 3B1u route is not favorable to the isomerization in comparison with these singlet routes. However, the rearomatization of Dewar–benzene in the ground state may produce the 3B1u benzene in small yield with higher yield of the ground-state benzene. The activation energy in the rearomatization is calculated to be 19.03 kcal/mol. These conclusions are consistent with the experimental facts. Molecular orbital correlations in the isomerization and the ionization potentials of Dewar–benzene were also discussed.  相似文献   

9.
W. Abraham  W. Paulick  D. Kreysig 《Tetrahedron》1979,35(19):2269-2273
The substituent effect of the dimethylamino group in diarylcycloheptatrienes, on the one hand, leads to a strict selection of the reaction way of the sigmatropic hydrogen shift. On the other hand, these substituents in 1,4-positions give rise to the reversible photo valence isomerization cycloheptatriene-bicycloheptadiene. The quantum yield of the sigmatropic H-shift depends strongly on the wavelength of the exciting light. It has been shown by sensitizing and quenching experiments that the intramolecular cyclisation does not proceed through triplet manifold or fluorescent minimum, but through an independent “funnel” in the singlet state. The ring opening is possible not only photoinduced, but also thermically with small activation energy.  相似文献   

10.
Quantum yields as high as 120 were achieved for triplet-sensitized photoisomerizations of several Dewar benzene reactants, R, to the corresponding benzene products, P. Considerable chain amplification is maintained even at high conversion. All relevant rate constants of this triplet chain reaction were extracted from laser flash photolysis plus steady-state photolysis experiments. The crucial rate constant ka for adiabatic isomerization of the triplet reactant to triplet product (R* --> P*) cannot be directly measured because it is so large relative to the bimolecular rate of R* formation via sensitization. However, ka was obtained indirectly using a cage/encounter complex model to analyze the competition between the dissociation of encounter pairs with the sensitizer, e.g., S/R* --> S + R*, and the in-cage processes, S/R* --> S/P* --> S*/P, in nonviscous and viscous solvents. These measurements yielded ka values of (approximately 4-9) x 10(9) s(-1), which suggests that only a small (approximately 3 kcal/mol) energy barrier exists along the potential energy surface from R* to P*. Steady-state data indicated that the chain-terminating rate constant R* --> R is negligibly small, an ideal condition for chain amplification. Triplet energy transfer from a series of sensitizers to the Dewar benzene derivatives shows a nonclassical falloff in rate constants with decreasing sensitizer triplet energy, suggesting energy transfer to thermally distorted configurations having lower singlet-triplet energy gaps. As a result of distorted geometries of R* and P*, the chain-propagating energy transfer from P* to R proceeds with a rate constant of only approximately 2 x 10(7) M(-1) s(-1), despite strong exothermicity. The isomerization reaction can release over 100 kcal/kcal of absorbed photons due to the high-energy content of the reactant together with the large chain length.  相似文献   

11.
The photochemical isomerization reactions of furan, 2-methylfuran, 2-trimethylsilylfuran, and furan-2-carbonitrile were studied using ab initio methods. The results are in agreement with the previously reported data obtained through semiempirical methods. In particular, the sensitized irradiation of furan derivatives populates the first excited triplet state of the furan, and this triplet state can evolve only through O-Ca cleavage. The selection of the bond to be broken can depend on energetic factors (furan-2-carbonitrile) or on kinetic factors (2-methylfuran, 2-trimethylsilylfuran). The direct irradiation of furan derivatives populates the singlet excited state and leads to a conversion into the Dewar isomer or into the corresponding triplet state through the usual intersystem crossing procedure. The efficiency of these processes determines the presence or the absence of isomerized furan derivatives in the reaction mixtures.  相似文献   

12.
The triplet state of ergosterol (provitamin D2) has been produced in benzene by pulse radiolysis and characterised in terms of absorption spectrum, lifetime, self-quenching properties and relaxed triplet energy. The amount of singlet oxygen, O2(1Δg), produced as a consequence of the oxygen quenching of this species has been determined by kinetic infrared emission spectroscopy. Ergosterol is significantly more efficient as a singlet oxygen sensitiser in benzene than is naphthalene, the absolute standard employed in this work.  相似文献   

13.
Absorption spectra and decay kinetics of the polar triplet exciplexes (contact radical-ion pairs) formed during quenching of the chloranil triplet state by trans- or cis-stilbenes in benzene with added acetonitrile and methanol, have been studied by laser flash photolysis. The exciplexes include cation-radicals of stilbene dimers, which are deactivated by reverse electron transfer within 10–50 nsec. The dynamics of the intercombination electron transfer and the exciplex dissociation into ion-radicals were determined. The isomerization of stilbene via triplet exciplex formation was not observed.N. N. Semenov Institute of Chemical Physics, Russian Academy of Sciences, Moscow 117977. Translated from Izvestiya Akademii Nauk, Seriya Khimicheskaya, No. 3, pp. 572–576, March, 1992.  相似文献   

14.
Abstract— Triplet extinction coefficients and hence singlet → triplet intersystem crossing quantum yields have been measured in benzene for a number of linear furocoumarins including pseudopsoralen, 5, 8-dimethoxypsoralen, 4, 5', 8-trimethylpsoralen and 3-carbethoxypseudopsoralen. These triplet yields were then used in conjunction with the corresponding quantum yields of singlet oxygen formation, measured in oxygenated solution, to estimate the fractions of furocoumarin triplets which when quenched by ground state oxygen produce singlet excited oxygen, similar data being obtained for psoralen, 5-methoxypsoralen, 8-methoxypsoralen and 3-carbethoxypsoralen. The superoxide anion radical was not detected from these oxygen quenching reactions, nor was a contribution to the singlet oxygen yield found from furocoumarin excited singlet state quenching by oxygen. The fraction of furocoumarin-oxygen quenching interactions leading to singlet oxygen varied between 0.13 (for 5, 8-dimethoxypsoralen) and unity (for 3-carbethoxypsoralen), and thus needs to be taken into account, as well as the triplet quantum yields, in assessing photobiological processes involving singlet oxygen.  相似文献   

15.
Abstract —Our recent research on photochemiluminescence (PCL) of pigments in solutions is reviewed. PCL was observed in the course of photooxidation by oxygen of chlorophyll a , bacteriochlorophyll, protochlorophyll, their analogs, synthetic dyes and aromatic hydrocarbons. The PCL of chlorophyll was studied in detail. It depends on oxygen concentration, intensity of exciting light, pH, nature of pigments, solvents etc. The thermochemiluminescence was observed after illumination of liquid and solid pigment solutions at low temperature (down to - 170C). The excitation spectra of PCL coincide with the pigment absorption spectra. The PCL emission spectra in most cases differ from those of pigment fluorescence. Electron acceptors, electron donors, radical inhibitors and β-carotene quench PCL. The quenching efficiency of electron acceptors is similar to their action on the chlorophyll triplet state. The quenching effect of radical inhibitors and β-carotene correlates with their activity in reaction with singlet oxygen. The effect of quenchers on the chlorophyll fluorescence, photobleaching and pigment sensitized oxygenation was studied. Analysis of experimental data allowed the assumption that chemiluminescence accompanies the decomposition of labile pigment peroxides. The accumulation of peroxides is probably due to the reaction in the complex of pigment and singlet oxygen, formed as a result of energy transfer from photoexcited (triplet) pigment molecules to oxygen. The terminal chemiluminescence emission proceeds from the singlet excited states of molecules of pigments and products of their oxidation.  相似文献   

16.
Fluorescence and laser-flash photolysis measurements have been performed on two pairs of diastereomeric dyads that contain the nonsteroidal anti-inflammatory drug (S)- or (R)-flurbiprofen (FBP) and (S)-tryptophan (Trp), which is a relevant amino acid present in site I of human serum albumin. The fluorescence spectra were obtained when subjected to excitation at 266 nm, where approximately 60% of the light is absorbed by FBP and approximately 40% is absorbed by Trp; the most remarkable feature observed in all dyads was a dramatic fluorescence quenching, and the residual emission was assigned to the Trp chromophore. In addition, an exciplex emission was observed as a broad band between 380 and 500 nm, especially in the case of the (R,S) diastereomers. The fluorescence lifetimes (tauF) at lambdaem=340 nm were clearly shorter in the dyads than in Trp-derived model compounds; in contrast, the values of tauF at lambdaem=440 nm (exciplex) were much longer. On the other hand, the typical FBP triplet-triplet transient absorption spectrum was obtained when subjected to laser-flash photolysis, although the signals were less intense than when FBP was directly excited under the same conditions. The main photophysical events in FBP-Trp dyads can be summarized as follows: (1) most of the energy provided by the incident radiation at 266 nm reaches the excited singlet state of Trp (1Trp*), either via direct absorption by this chromophore or by singlet singlet energy transfer from excited FBP (1FBP*); (2) a minor, yet stereoselective deactivation of 1FBP* leads to detectable exciplexes and/or radical ion pairs; (3) the main process observed is intramolecular 1Trp* quenching; and (4) the first triplet excited-state of FBP can be populated by triplet-triplet energy transfer from excited Trp or by back-electron transfer within the charge-separated states.  相似文献   

17.
Recently, we have developed novel Eu(III) complexes with three beta-diketonates and one asymmetric bis(phosphine) oxide whose light emission intensity is drastically increased. In this paper, one of these complexes is investigated by the density functional theory calculation. Sixteen isomers of this complex have been considered. The ratio of the existence for the most stable isomer (B1_1a) is found to be about 51%, and the sum of the ratio of the existence for the six most stable isomers (B1_1a, B1_3a, B1_8a, B1_2a, B1_1b, and B1_5a) is about 100%, assuming the Boltzmann distribution (T = 300 K). The coordination structures of the six most stable isomers in the ground states are similar, and we can expect asymmetric ligand fields for them, favorable for the efficient light emission. Vertical excitation energies and oscillator strengths for each isomer have been obtained by the time-dependent density functional theory. With the red-shift of the wavelength and the interpolation by Gaussian convolution, both the calculated absorption spectra for the most stable isomer B1_1a and the calculated absorption spectra for the ensemble average of the isomers are found to be similar to the experimental fluorescence excitation spectra. The efficiency of energy transfer from the triplet excited state to the Eu(III) ion is considered by calculating DeltaEET (difference between the adiabatic excitation energy of the complex for the lowest triplet state and the emission energy of the Eu(III) ion for 5D0 to 7F2). The characters for the lowest triplet states for the isomers are investigated by the spin density distributions of the triplet states.  相似文献   

18.
We have explored the photogeneration of the coumarin 314 radical cation by using nanosecond laser excitation at wavelengths longer than 400 nm in benzene, acetonitrile, dichloromethane, and aqueous media. In addition, time-resolved absorption spectroscopy measurements allowed detection of the triplet excited state of coumarin 314 (C(314)) with a maximum absorption at 550 nm in benzene. The triplet excited state has a lifetime of 90 μs in benzene. It is readily quenched by oxygen (k(q) = 5.0 × 10(9) M(-1) s(-1)). From triplet-triplet energy transfer quenching experiments, it is shown that the energy of this triplet excited state is higher than 35 kcal/mol, in accord with the relatively large singlet oxygen quantum yield (Φ(Δ) = 0.25). However, in aqueous media, the coumarin triplet was no longer observed, and instead of that, a long-lived (160 μs in air-equilibrated solutions) free radical cation with a maximum absorbance at 370 nm was detected. The free radical cation generation, which has a quantum yield of 0.2, occurs by electron photoejection. Moreover, density functional theory (DFT) calculations indicate that at least 40% of the electronic density is placed on the nitrogen atom in aqueous media, which explains its lack of reactivity toward oxygen. On the other hand, rate constant values close to the diffusion rate limit in water (>10(9) M(-1) s(-1)) were found for the quenching of the C(314) free radical cation by phenolic antioxidants. The results have been interpreted by an electron-transfer reaction between the phenolic antioxidant and the radical cation where ion pair formation could be involved.  相似文献   

19.
In the present paper, different electronic structure methods have been used to determine stationary and intersection structures on the ground (S(0)) and (1)ππ? (S(2)) states of 4-methylpyridine, which is followed by adiabatic and nonadiabatic dynamics simulations to explore the mechanistic photoisomerization of 4-methylpyridine. Photoisomerization starts from the S(2)((1)ππ?) state and overcomes a small barrier, leading to formation of the prefulvene isomer in the S(0) state via a S(2)∕S(0) conical intersection. The ultrafast S(2) → S(0) nonradiative decay and low quantum yield for the photoisomerization reaction were well reproduced by the combined electronic structure calculation and dynamics simulation. The prefulvene isomer was assigned as a long-lived intermediate and suggested to isomerize to 4-methylpyridine directly in the previous study, which is not supported by the present calculation. The nonadiabatic dynamics simulation and electronic structure calculation reveal that the prefulvene isomer is a short-lived intermediate and isomerizes to benzvalene form very easily. The benzvalene form was predicted as the stable isomer in the present study and is probably the long-lived intermediate observed experimentally. A consecutive light and thermal isomerization cycle via Dewar isomer was determined and this cycle mechanism is different from that reported in the previous study. It should be pointed out that formation of Dewar isomer from the S(2)((1)ππ?) state is not in competition with the isomerization to the prefulvene form. The Dewar structure observed experimentally may originate from other excited states.  相似文献   

20.
The anharmonic infrared emission spectrum following an optical excitation has been calculated for a variety of polycyclic aromatic hydrocarbon molecules in their ground singlet electronic state or in their triplet state. The computational protocol relies on second-order perturbation theory and involves a quartic vibrational Hamiltonian, the vibrational quantum numbers being sampled according to a Monte Carlo procedure. In the case of neutral naphthalene, the IR spectrum obtained in the (ground) singlet state differs significantly from the spectrum in the triplet state, especially for out-of-plane CH bending modes. Although not as prominent, spectral differences in larger molecules are still observable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号