首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
The qualities of a DES (Detached Eddy Simulation) and a PANS (Partially-Averaged Navier–Stokes) hybrid RANS/LES model, both based on the kω RANS turbulence model of Wilcox (2008, “Formulation of the kω turbulence model revisited” AIAA J., 46: 2823–2838), are analysed for simulation of plane impinging jets at a high nozzle-plate distance (H/B = 10, Re = 13,500; H is nozzle-plate distance, B is slot width; Reynolds number based on slot width and maximum velocity at nozzle exit) and a low nozzle-plate distance (H/B = 4, Re = 20,000). The mean velocity field, fluctuating velocity components, Reynolds stresses and skin friction at the impingement plate are compared with experimental data and LES (Large Eddy Simulation) results. The kω DES model is a double substitution type, following Davidson and Peng (2003, “Hybrid LES–RANS modelling: a one-equation SGS model combined with a kω model for predicting recirculating flows” Int. J. Numer. Meth. Fluids, 43: 1003–1018). This means that the turbulent length scale is replaced by the grid size in the destruction term of the k-equation and in the eddy viscosity formula. The kω PANS model is derived following Girimaji (2006, “Partially-Averaged Navier–Stokes model for turbulence: a Reynolds-Averaged Navier–Stokes to Direct Numerical Simulation bridging method” J. Appl. Mech., 73: 413–421). The turbulent length scale in the PANS model is constructed from the total turbulent kinetic energy and the sub-filter dissipation rate. Both hybrid models change between RANS (Reynolds-Averaged Navier–Stokes) and LES based on the cube root of the cell volume. The hybrid techniques, in contrast to RANS, are able to reproduce the turbulent flow dynamics in the shear layers of the impacting jet. The change from RANS to LES is much slower however for the PANS model than for the DES model on fine enough grids. This delays the break-up process of the vortices generated in the shear layers with as a consequence that the DES model produces better results than the PANS model.  相似文献   

2.
Three-dimensional numerical modeling using Detached Eddy Simulation (DES) based on unsteady Reynolds-Averaged Navier–Stokes (RANS) with the k–ω SST (Shear-Stress Transport) turbulence model has been carried out to evaluate the characteristics of a shallow wake flow. The shallow wake is generated by inserting a sharp-edged bluff body in the open channel flow. A horseshoe vortex is captured in front of the body, which stretches downstream and envelops the vortices that form part of the shear layers. The mean and instantaneous flow field characteristics in the wake are examined and compared at different downstream locations to evaluate the three-dimensional features in the flow. Streamwise positive directed velocity is observed in the wake centerline at horizontal planes close to the bed. Flow features hitherto not captured in experimental studies can be identified in sections parallel to the bed and body. A typical signature of three-dimensionality, upward ejection of fluid elements from the bed towards the free surface, is also observed in the wake.  相似文献   

3.
Three-dimensional Direct Numerical Simulation (DNS) and Large Eddy Simulation (LES) are performed to investigate the shear effects on flow around a circular cylinder at Reynolds numbers of Re=60–1000. The shear parameter, β, which is based on the velocity gradient, cylinder diameter and upstream mean velocity at the center plane of the cylinder, varies from 0 to 0.30. Variations of Strouhal number, drag and lift coefficients, and unsteady wake structures with shear parameter are studied, along with their dependence on Reynolds number. The presented simulation provides detailed information for the flow field around a circular cylinder in shear flow. This study shows that the Strouhal number exhibits no significant variation with shear parameter. The stagnation point moves to the high-velocity side almost linearly with shear parameter, and this result mainly influences the aerodynamic forces acting on a circular cylinder in shear flow. Both the Reynolds number and shear parameter influence the movement of the stagnation point and separation point. Mode A wake instability is suppressed into parallel vortex shedding mode at a certain shear parameter. The lift force increases with increasing shear parameter and acts from the high-velocity side to the low-velocity side. In addition, a simple method to estimate the lift force coefficient in shear flow is provided.  相似文献   

4.
A new hybrid RANS/LES approach with scale-adaptive capabilities is developed. The blending function in the SST model is adopted to prevent the invasion of the von Karman length scale to the RANS region, and the compressibility correction proposed by Wilcox is incorporated to produce a realistic shear layer development in compressible flows. The new model is validated for a subcritical flow past a circular cylinder and a supersonic base flow. Time-averaged turbulent statistics predicted by the new model show fairly good agreement with the experimental data, slight improvements over DES simulations, and are much better than SAS results. The main advantage of the new model over the DES method is that the distribution of the blending function reflects local vortex structures instead of grid spacing in the turbulent wake. The sequence of the effect intensity of the compressibility correction from strong to weak is SAS, the new model and DES.  相似文献   

5.
Flow control has shown a potential in reducing the drag in vehicle aerodynamics. The present numerical study deals with active flow control for a quasi-2D simplified vehicle model using a synthetic jet (zero net mass flux jet). Recently developed near-wall Partially-Averaged Navier–Stokes (PANS) method, based on the ζf RANS turbulence model, is used. The aim is to validate the performance of this new method for the complex flow control problem. Results are compared with previous studies using LES and experiments, including global flow parameters of Strouhal number, drag coefficients and velocity profiles. The PANS method predicts a drag reduction of approximately 15%, which is closer to the experimental data than the previous LES results. The velocity profiles predicted by the PANS method agree well with LES results and experimental data for both natural and controlled cases. The PANS prediction showed that the near-wake region is locked-on due to the synthetic jet, and the shear layer instabilities are thus depressed which resulted in an elongated wake region and reduced drag. It demonstrates that the PANS method is able to predict the flow control problem well and is thus appropriate for flow control studies.  相似文献   

6.
Xiao and Jenny (2012) proposed an interesting hybrid LES/RANS method in which they use two solvers and solve the RANS and LES equations in the entire computational domain. In the present work this method is simplified and used as a hybrid RANS-LES method, a wall-modeled LES. The two solvers are employed in the entire domain. Near the walls, the flow is governed by the steady RANS solver; drift terms are added to the DES equations to ensure that the time-averaged DES fields agree with the steady RANS field. Away from the walls, the flow is governed by the DES solver; in this region, the RANS field is set to the time-averaged LES field. The disadvantage of traditional DES models is that the RANS models in the near-wall region – which originally were developed and tuned for steady RANS – are used as URANS models where a large part of the turbulence is resolved. In the present method – where steady RANS is used in the near-wall region – the RANS turbulence models are used in a context for which they were developed. In standard DES methods, the near-wall accuracy can be degraded by the unsteady agitation coming from the LES region. It may in the present method be worth while to use an accurate, advanced RANS model. The EARSM model is used in the steady RANS solver. The new method is called NZ S-DES . It is found to substantially improve the predicting capability of the standard DES. A great advantage of the new model is that it is insensitive to the location of the RANS-LES interface.  相似文献   

7.
Flow and mixing processes in a classical coaxial jet mixer have been investigated numerically. Calculations have been performed using three Large Eddy Simulation models and three unsteady RANS models. The time averaged mixture fraction and axial velocity, their rms values and energy spectra are compared with LIF and LDA measurements for both j- and r-modes of the jet mixer flow. A special attention is paid to the ability of different models to reproduce unsteady effects. The analysis demonstrates the superiority of the LES method with the dynamic mixed SGS model (DMM) with respect to other RANS and LES models.  相似文献   

8.
This paper investigates the effects of surface roughness on the flow past a circular cylinder at subcritical to transcritical Reynolds numbers. Large eddy simulations of the flow for sand grain roughness of size k/D = 0.02 are performed (D is the cylinder diameter). Results show that surface roughness triggers the transition to turbulence in the boundary layer at all Reynolds numbers, thus leading to an early separation caused by the increased momentum deficit, especially at transcritical Reynolds numbers. Even at subcritical Reynolds numbers, boundary layer instabilities are triggered in the roughness sublayer and eventually lead to the transition to turbulence. The early separation at transcritical Reynolds numbers leads to a wake topology similar to that of the subcritical regime, resulting in an increased drag coefficient and lower Strouhal number. Turbulent statistics in the wake are also affected by roughness; the Reynolds stresses are larger due to the increased turbulent kinetic energy production in the boundary layer and separated shear layers close to the cylinder shoulders.  相似文献   

9.
The detached‐Eddy simulation (DES) method was applied to calculate pre‐ and post‐stall aerodynamic characteristics of airfoil stall. A discrepancy between numerical and experimental data was observed near the stall regime for the airfoil NACA64A‐ 006 which is a thin airfoil stall type. The reason of this discrepancy and one possible way for improvement of the numerical model are discussed here. It is shown that the use of the Baldwin–Lomax model in the RANS region improves the DES results in this case. If the relevant factors (grid density, time step, turbulence model, etc.) are appropriately taken into account, the DES approach could reliably predict stall aerodynamical characteristics. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

10.
The scope of this work is to demonstrate the applicability of an eddy resolving turbulence model in a turbomachinery configuration. The model combines the Large Eddy Simulation (LES) and the Reynolds Averaged Navier Stokes (RANS) approach. The point of interest of the present investigation is the unsteady rotating stall phenomenon occurring at low part load conditions. Since RANS turbulence models often fail to predict separation correctly, a LES like model is expected to give superior results. In this investigation the scale-adaptive simulation (SAS) model is used. This model avoids the grid dependence appearing in the Detached Eddy Simulation (DES) modelling strategy. The simulations are validated with transient measurement data. The present results demonstrate, that both models are able to predict the major stall frequency at part load. Results are similar for URANS and SAS, with advantages in predicting minor stall frequencies for the turbulence resolving model.  相似文献   

11.
An efficient generalized Zonal Detached Eddy Simulation method (ZDES) is presented, which aims at performing hybrid Reynolds Averaged Numerical Simulation (RANS)/Large Eddy Simulation (LES) calculations for both internal and external aerodynamics problems. It is based on a zonal formulation of the hybrid length scale that allows to combine the zonal approach with the best features of Delayed Detached Eddy Simulation (DDES) (Spalart et?al. Theor Comput Fluid Dyn 20:181–195, 2006). In other words, the presumed weak point of a zonal approach, namely that the location of separation has to be known in advance, is now overcome. What is more, the problem of slow LES content development in mixing layers when they are treated neither in RANS nor in LES mode is investigated. It is argued that the subgrid length scale Δmax?=?max(Δx, Δy, Δz) entering DDES is physically justified to shield the boundary layer but is definitely not a good subgrid length scale in LES mode. Remedies are proposed based on new zonal subgrid length scales that depend not only on the grid spacing but also on the flow solution and especially on the local vorticity vector. The method is validated on a spatially developing mixing layer as well as in a backward facing step flow and then applied to a three-element airfoil. It is argued in this latter case that a precise control of the RANS mode thanks to a zonal approach is essential. More generally, in all simulated cases in this study, ZDES has proven to be very efficient as regards the behavior in LES mode while retaining the strongest asset of DDES, namely the treatment of the attached boundary layer in RANS mode. The issue of zonal or non-zonal treatment of turbulent flows is also briefly discussed.  相似文献   

12.
Numerical Simulation of Single-Stream Jets from a Serrated Nozzle   总被引:1,自引:0,他引:1  
Hybrid large-eddy type simulations for cold jet flows from a serrated nozzle are performed at an acoustic Mach number Ma ac ?=?0.9 and Re?=?1.03×106. Since the solver being used tends towards having dissipative qualities, the subgrid scale (SGS) model is omitted, giving a numerical type LES (NLES) or implicit LES (ILES) reminiscent procedure. To overcome near wall streak resolution problems a near wall RANS (Reynolds averaged Navier-Stokes) model is smoothly blended to the LES making a hybrid RANS-ILES. The geometric complexity of the serrated nozzle is fully considered without simplification or emulation. An improved but still modest hexahedral multi-block grid with circa 20 million grid points (with respect to 12.5 million in Xia et al., Int J Heat Fluid Flow 30:1067–1079, 2009) is used. Despite the modest grid size, encouraging and improved results are obtained. Directly resolved mean and second-order fluctuating quantities along the jet centerline and in the jet shear layer compare favorably with measurements. The radiated far-field sound predicted using the Ffowcs Williams and Hawkings (FW-H) surface integral method shows good agreement with the measurements in directivity and sound spectra.  相似文献   

13.
Characteristics of supersonic mixing and combustion with hydrogen injection upstream of a cavity flameholder are investigated numerically using hybrid RANS/LES (Reynolds-Averaged Navier–Stokes/Large-Eddy Simulation) method. Two types of inflow boundary layer are considered. One is a laminar-like boundary layer with inflow thickness of $\delta_{\inf } = 0.0$ and the other is a turbulent boundary layer with inflow thickness of $\delta_{\inf } = 2.5\,{\text{mm}}$ . The hybrid RANS/LES method acts as a DES (Detached Eddy Simulation) model for the laminar-like inflow condition and a wall-modeled LES for the turbulent inflow condition where the recycling/rescaling method is adopted. Although the turbulent inflow seems to have just minor influences on the supersonic cavity flow without fuel injection, its effects on the mixing and combustion processes are great. It is found that the unsteady turbulent structures in upstream incoming boundary layer interact with the injection jet, resulting in fluctuations of the upstream recirculation region and bow shock, and induce quick dispersion of the hydrogen fuel jet, which enhances the mixing as well as subsequent combustion.  相似文献   

14.
Computational Fluid Dynamics using RANS-based modelling approaches have become an important tool in the internal combustion engine development and optimization process. However, these models cannot resolve cycle to cycle variations, which are an important aspect in the design of new combustion systems. In this study the feasibility of using a Detached Eddy Simulation (DES) SST model, which is a hybrid RANS/LES model, to predict cycle to cycle variations is investigated. In the near wall region or in regions where the grid resolution is not sufficiently fine to resolve smaller structures, the two-equation RANS SST model is used. In the other regions with higher grid resolution an LES model is applied. The case considered is a geometrically simplified engine, for which detailed experimental data for the ensemble averaged and single cycle velocity field are available from Boreé et al. [Boreé, J., Maurel, S., Bazile, R., 2002. Disruption of a compressed vortex, Physics of Fluids 14 (7), 2543–2556]. The fluid flow shows a strong tumbling motion, which is a major characteristic for modern turbo-charged, direct-injection gasoline engines. The general flow structure is analyzed first and the extent of the LES region and the amount of resolved fluctuations are discussed. Multiple consecutive cycles are computed and turbulent statistics of DES SST, URANS and the measured velocity field are compared for different piston positions. Cycle to cycle variations of the velocity field are analyzed for both computation and experiment with a special emphasis on the useability of the DES SST model to predict cyclic variations.  相似文献   

15.
We investigate the performance of unsteady Reynolds-averaged Navier–Stokes (URANS) computation and various versions of detached eddy simulation (DES) in resolving coherent structures in turbulent flow around two cubes mounted in tandem on a flat plate at Reynolds number (Re) of 22,000 and for a thin incoming boundary layer. Calculations are carried out using four different coherent structure resolving turbulence models: (1) URANS with the Spalart–Allmaras model; (2) the standard DES [Spalart, P.R., Jou, W.H., Strelets, M., Allmaras, S.R., 1997. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In: Liu, C., Liu, Z., (Eds.), Advances in DNS/LES. Greyden Press, Columbus, OH]; (3) the Delayed DES (DDES); and (4) the DES with a low-Re modification (DES-LR) [Spalart, P., Deck, S., Shur, M., Squires, K., Strelets, M., Travin, A., 2006. A new version of detached eddy simulation, resistant to ambiguous grid densities. Theor. Comput. Fluid Dyn. 20 (3), 181–195]. The grid sensitivity of the computed solutions is examined by carrying out simulations on two successively refined grids. The computed results for all cases are compared with the experimental measurements of Martinuzzi and Havel [Martinuzzi, R., Havel, B., 2000. Turbulent flow around two interfering surface-mounted cubic obstacles in tandem arrangement. ASME J. Fluids Eng. 122, 24–31] for two different cube spacings. All turbulence models reproduce essentially identical separation of the approach thin boundary layer and yield an unsteady horseshoe vortex system consisting of multiple vortices in the leading edge region of the upstream cube. Significant discrepancies between the URANS and all DES solutions are observed, however, in other regions of interest such as the shear layers emanating from the cubes, the inter-cube gap and the downstream wake. Regardless of the grid refinement, URANS fails to capture key features of the mean flow, including the second horseshoe vortex in the upstream junction and recirculating flow on the top surface of the downstream cube for the large cube spacing, and underestimates significantly turbulence statistics in most regions of the flow for both cases. On the coarse mesh, all three DES approaches appear to yield very similar results and fail to reproduce the second horseshoe vortex. The standard DES and DDES solutions obtained on the fine meshes are essentially identical and both suffer from premature switching to unresolved DNS, due to the mis-interpretation of grid refinement as wall proximity, which leads to spurious vortices in the inter-cube region. Numerical solutions show that the low-Re modification (DES-LR) is critical prerequisite in DES on the ambiguously fine – not fine enough for full LES – mesh to prevent excessive nonlinear drop of the subgrid eddy viscosity in low cell-Re regions like in the inter-obstacle gap. Mean flow quantities and turbulence statistics obtained with DES-LR on the fine mesh are in good overall agreement with the measurements in most regions of interest for both cases.  相似文献   

16.
One of the most important and challenging topics in the Large Eddy Simulation of turbulent flows is the connection of the LES technique to the well known and largely used RANS approach where the Navier–Stokes equations are Reynolds averaged. The hybridation of LES and RANS is not only important for its possible practical use, (a rational use of the computational means in different zones), but also from a theoretical point of view, and one possible procedure consists of blending RANS and LES models in the transition zone. In this paper a new filtering technique based on blending filters which transitions smoothly between LES and RANS is proposed and the associated universal model for the subgrid scale stresses is derived. PACS 47.27.Eq  相似文献   

17.
Detached-eddy simulation (DES) is well understood in thin boundary layers, with the turbulence model in its Reynolds-averaged Navier–Stokes (RANS) mode and flattened grid cells, and in regions of massive separation, with the turbulence model in its large-eddy simulation (LES) mode and grid cells close to isotropic. However its initial formulation, denoted DES97 from here on, can exhibit an incorrect behavior in thick boundary layers and shallow separation regions. This behavior begins when the grid spacing parallel to the wall Δ becomes less than the boundary-layer thickness δ, either through grid refinement or boundary-layer thickening. The grid spacing is then fine enough for the DES length scale to follow the LES branch (and therefore lower the eddy viscosity below the RANS level), but resolved Reynolds stresses deriving from velocity fluctuations (“LES content”) have not replaced the modeled Reynolds stresses. LES content may be lacking because the resolution is not fine enough to fully support it, and/or because of delays in its generation by instabilities. The depleted stresses reduce the skin friction, which can lead to premature separation.For some research studies in small domains, Δ is made much smaller than δ, and LES content is generated intentionally. However for natural DES applications in useful domains, it is preferable to over-ride the DES limiter and maintain RANS behavior in boundary layers, independent of Δ relative to δ. For this purpose, a new version of the technique – referred to as DDES, for Delayed DES – is presented which is based on a simple modification to DES97, similar to one proposed by Menter and Kuntz for the shear–stress transport (SST) model, but applicable to other models. Tests in boundary layers, on a single and a multi-element airfoil, a cylinder, and a backward-facing step demonstrate that RANS function is indeed maintained in thick boundary layers, without preventing LES function after massive separation. The new formulation better fulfills the intent of DES. Two other issues are discussed: the use of DES as a wall model in LES of attached flows, in which the known log-layer mismatch is not resolved by DDES; and a correction that is helpful at low cell Reynolds numbers.  相似文献   

18.
An efficient recycling algorithm is developed for injecting resolved turbulent content in a boundary layer as it switches from a Reynolds Averaged Navier-Stokes (RANS) type treatment to a Large Eddy Simulation (LES) type treatment inside a generalized Detached-Eddy Simulation (DES). The motivation is to use RANS in the thinnest boundary-layer area, following the original argument in favour of DES, and LES in the thicker boundary-layer areas especially approaching separation, to improve accuracy and possibly obtain unsteady outputs. The algorithm relies on an overlap of the RANS and LES domains and, therefore, the availability of both RANS and LES solutions in the recycling region, which is about 5 boundary-layer thicknesses long. This permits a smooth transfer of the turbulent stresses from this section to the LES inflow. The continuity of the skin-friction distribution is very good, reflecting the excellent viability of the resolved turbulence. The approach is validated in a flat-plate boundary layer and an airfoil near stall, with mild pressure gradient near the interface, and then applied to the compressible flow over an idealized airliner windshield wiper. The pressure fluctuations at reattachment are 12dB more intense than under a simple boundary layer at the same speed, and the output contains all the quantities needed to calculate the transmission of sound through the glass.  相似文献   

19.
The “double-buffer problem” has been regarded as a crucial concern for the strategy behind the hybrid large eddy simulation (LES)/Reynolds-averaged Navier–Stokes (RANS) model (or HLR model, for short). Such models are likely to show unphysical mean-velocity distributions in the LES–RANS interface region, where “super-streak structures” also appear that look like low-speed streaks generated in the near-wall region of wall turbulence. To overcome this difficulty, the stochastic backscatter model, in which the vortex structures in the interface region are divided into smaller scales, holds promise due to the effect of random source term imposed in the momentum equation. Although this method is effective, several parameters must be prescribed and their specification process is arbitrary and ambiguous. An alternative advanced HLR model has been proposed, in which an anisotropy-resolving subgrid-scale (SGS) model was adopted in the LES region as well as a one-equation nonlinear eddy viscosity model in the RANS region. Previous investigations indicated that this HLR model did not exhibit or, at least, largely reduced the “double-buffer problem” in the mean-velocity distribution, with no special treatment being applied. The main purpose of the present study is to reveal why this HLR model improves the predictive performance in the LES–RANS interface region. Specifically, we focus on the role of the extra anisotropic term introduced in the SGS model, finding that it plays an important role in enhancing vortex structures in the interface region, leading to a considerable improvement in model performance.  相似文献   

20.
A new wall-damping function, based on the Kolmogorov velocity scale, for large eddy simulation (LES) is proposed, which accounts for the near-wall effect. To calculate the Kolmogorov velocity scale, uε, the dissipation rate of turbulent energy, ε, is needed. In LES, however, the dissipation rate is generally not solved, unlike in the Reynolds averaged Navier-Stokes (RANS) simulations, e.g., k-ε models. Although, in some previous studies, the dissipation rate of the subgrid-scale (SGS) turbulent energy, εSGS, is used instead of ε in calculating the Kolmogorov velocity scale, the scale obtained using such a method overly depends on the grid resolution employed and is generally inappropriate. Accordingly, the wall-damping function using the incorrect velocity scale also depends on the grid resolution and gives an inadequate wall effect. This is because εSGS contains only the components in the scale smaller than the grid-filter width, which obviously varies with the grid resolution employed. In this study, to overcome this problem, we propose a method for estimating the Kolmogorov velocity scale with a technique of conversion in LES, and the estimated one is utilized in the wall-damping function. The revised wall-damping function for LES is tested in channel flows and a backward-facing step flow. The results show that it yields a proper near-wall effect in all test cases which cover a wide range of grid resolution and Reynolds numbers. It is also shown that all three kinds of SGS models incorporating the present wall-damping function provide good predictions, and it is effective both in one-equation and 0-equation SGS models. These results suggest that the use of the proposed wall-damping function is a refined and versatile near-wall treatment in LES with various kinds of SGS models.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号