首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In this paper, a rapid numerical difference recurrent formula, in which it has been taken that the chromatic dispersion and the nonlinearity act together along each fiber segment, is established in the time domain by applying a Maclaurin expansion to the differential form of the nonlinear Schrödinger equation (NLSE) in the frequency domain. The calculated results by using the established formula are contrasted with the known analytical results and the results of the split-step Fourier method (SSFM) and indicated that the rapid numerical difference recurrent formula is very accurate and more reasonable because it abandons an assumption that the dispersive and nonlinear effects can be assumed to act independently as the optical field propagates over each fiber segment. It has been concluded that the established formula in this paper is a scientific, reasonable and effective numerical method for the study of light pulse propagation in a nonlinear optical medium.  相似文献   

2.
In this work, we investigate the Fokas–Lenells equation describing the propagation of ultrashort pulses in optical fibers when certain terms of the next asymptotic order beyond those necessary for the nonlinear Schrö dinger equation are retained. In addition to group velocity dispersion and Kerr nonlinearity, the model involves both spatio-temporal dispersion and self-steepening terms. A class of exact combined solitary wave solutions of this equation is constructed for the first time, by adopting the complex envelope function ansatz. The influences of spatio-temporal dispersion on the characteristics of combined solitary waves is also discussed.  相似文献   

3.
We investigate the possibility of forming spatiotemporal solitons (optical bullets) in inhomogeneous, dispersive nonlinear media using a graded-index Kerr medium as an example. We use a variational approach to solve the multidimensional, inhomogeneous, nonlinear Schrödinger equation and show that spatiotemporal solitons can be stabilized under certain conditions. We verify their existence by means of a full numerical analysis and show that such solitons should be observable experimentally.  相似文献   

4.
We investigate the long-time dynamics of two-component dilute gas Bose–Einstein condensates with relatively different two-body interactions and Josephson couplings between the two components. Although in certain parameter regimes the quantum state of the system is known to evolve into macroscopic superposition, i.e., Schrödinger cat state, of two states with relative atom number differences between the two components, the Schrödinger cat state is also found to repeat the collapse and revival behavior in the long-time region. The dynamical behavior of the Pegg–Barnett phase difference between the two components is shown to be closely connected with the dynamics of the relative atom number difference for different parameters. The variation in the relative magnitude between the Josephson coupling and intra- and inter-component two-body interaction difference turns out to significantly change not only the size of the Schrödinger cat state but also its collapse–revival period, i.e., the lifetime of the Schrödinger cat state.  相似文献   

5.
We present new type of Dark-in-the-Bright solution also called dipole soliton for the higher order nonlinear Schrödinger (HNLS) equation with non-Kerr nonlinearity under some parametric conditions and subject to constraint relation among the parameters in optical context. This equation could be a model equation of pulse propagation beyond ultrashort range in optical communication systems. The solitary wave solution is composed of the product of bright and dark solitary waves. This type of pulse shape to be formed both the group velocity dispersion and third-order dispersion must be compensated. We also investigated the stability of the solitary wave solution under some initial perturbation on the parametric conditions. We have shown that the shape of pulse remains unchanged up to 20 normalized lengths even under some very small violation in parametric conditions.  相似文献   

6.
V. I. Karpman   《Physics letters. A》1991,160(6):531-537
The self-focusing, described by the nonlinear Schrödinger equation with a higher-order derivative term, appearing from dispersive corrections, is considered. A qualitative investigation shows that this term, even if it is small, may play an important role in the final state of the self-focusing. Depending on the sign of a coefficient before this term, it may lead either to a tunneling of the self-trapped radiation, which finally results in defocusing, or to a steady homogeneous wave beam.  相似文献   

7.
8.
9.
We demonstrate on-chip all-optical pulse erasure based on four-wave mixing and cross-phase modulation in a dispersion engineered chalcogenide (As(2)S(3)) rib waveguide. We achieve an erasure efficiency of ~15 dB for picosecond pulses in good agreement with numerical simulations using the nonlinear Schr?dinger equation. The combined effect of the high instantaneous optical nonlinearity (γ = 9900 (W km)(-1)) and small group-velocity dispersion (D = 29 ps/nm km), which reduces pulse walk-off, will enable all-optical pulse erasure for ultrafast signal processing.  相似文献   

10.
Frequency-resolved optical gating is used to characterize the propagation of intense femtosecond pulses in a nonlinear, dispersive medium. The combined effects of diffraction, normal dispersion, and cubic nonlinearity lead to pulse splitting. The role of the phase of the input pulse is studied. The results are compared with the predictions of a three-dimensional nonlinear Schr?dinger equation.  相似文献   

11.
We construct analytical periodic wave and soliton solutions to the generalized nonautonomous nonlinear Schrödinger equation with time- and space-dependent distributed coefficients in harmonic and optical lattice potentials. We utilize the similarity transformation technique to obtain these solutions. Constraints for the dispersion coefficient, the nonlinearity, and the gain (loss) coefficient are presented at the same time. Various shapes of periodic wave and soliton solutions are studied analytically and physically. Stability analysis of the solutions is discussed numerically.  相似文献   

12.
Most of the important aspects of soliton propagation through optical fibers for transcontinental and transoceanic long distances can best be described using the nonlinear Schrödinger equation. Optical solitons are electromagnetic waves that span in nonlinear dispersive media and permit the stress and intensity to stay unaltered as a result of the delicate balance between dispersion and nonlinearity effects. However, this study exploited the Jacobi elliptic method and obtained different soliton solutions of the decoupled nonlinear Schrödinger equation with ease. Discussions about the obtained solutions were made with the aid of some 3D graphs.  相似文献   

13.
An optimized Rayleigh–Schrödinger expansion scheme of solving the functional Schrödinger equation with an external source is proposed to calculate the effective potential beyond the Gaussian approximation. For a scalar field theory whose potential function has a Fourier representation in a sense of tempered distributions, we obtain the effective potential up to the second order, and show that the first-order result is just the Gaussian effective potential. Its application to the λφ4 field theory yields the same post-Gaussian effective potential as obtained in the functional integral formalism.  相似文献   

14.
Semiclassically concentrated states of the nonlinear Schrödinger equation (NLSE) with unitary nonlinearity, representing multidimensional localized wave packets, are constructed on the basis of the Maslov complex germ theory. A system of ordinary differential equations of Hamilton-Ehrenfest (HE) type, describing the motion of the wave packet centroid, is derived. The structure of the HE system is strongly influenced by the initial conditions of the Cauchy problem for the NLSE. Wave packets of Gaussian type are constructed in an explicit form. Possible use of the solutions constructed in the problem of optical pulse propagation in a nonlinear medium with nonstationary dispersion is discussed.  相似文献   

15.
We study the discrete nonlinear Schr?dinger equation (DNLS) in an annular geometry with on-site defects. The dynamics of a traveling plane-wave maps onto an effective nonrigid pendulum Hamiltonian. The different regimes include the complete reflection and refocusing of the initial wave, solitonic structures, and a superfluid state. In the superfluid regime, which occurs above a critical value of nonlinearity, a plane wave travels coherently through the randomly distributed defects. This superfluidity criterion for the DNLS is analogous to (yet very different from) the Landau superfluidity criteria in translationally invariant systems. Experimental implications for the physics of Bose-Einstein condensate gases trapped in optical potentials and of arrays of optical fibers are discussed.  相似文献   

16.
A broad class of exact self-similar solutions to the nonlinear Schr?dinger equation (NLSE) with distributed dispersion, nonlinearity, and gain or loss has been found. Appropriate solitary wave solutions applying to propagation in optical fibers and optical fiber amplifiers with these distributed parameters have also been studied. These solutions exist for physically realistic dispersion and nonlinearity profiles in a fiber with anomalous group velocity dispersion. They correspond either to compressing or spreading solitary pulses which maintain a linear chirp or to chirped oscillatory solutions. The stability of these solutions has been confirmed by numerical simulations of the NLSE.  相似文献   

17.
阮航宇  李慧军 《物理学报》2005,54(3):996-1001
用推广的经典李群约化法,得到了色散系数、非线性系数、补偿(或损失)系数为时、空变量函数时的非线性薛定谔方程的精确解.深入研究了非线性薛定谔模型的一般孤波解与线性调频孤波解在光纤通讯与光纤放大器中的潜在应用. 关键词: 李群约化 非线性薛定谔方程 光纤通讯  相似文献   

18.
The dynamics of parametrically driven counterpropagating waves in a one-dimensional extended nearly conservative annular system are described by two coupled, damped, parametrically driven nonlinear Schrödinger (NLS) equations with opposite transport terms due to the group velocity, and small dispersion. The system is characterized by two length scales defined by a balance between (a) forcing and dispersion (the dispersive scale), and (b) forcing and advection at the group velocity (the transport scale). Both are large compared to the basic wavelength of the pattern. The dispersive scale plays an important role in the structure of solutions arising from secondary instabilities of frequency-locked spatially uniform standing waves (SW), and manifests itself both in traveling pulses or fronts and in extended spatio-temporal chaos, depending on the signs of the dispersion coefficient and nonlinearity.  相似文献   

19.
Whereas there exists a mathematical proof for one-site breathers stability, and an unpublished one for two-site breathers, the methods for determining the stability properties of multibreathers rely on numerical computation of the Floquet multipliers or on the weak nonlinearity approximation leading to discrete nonlinear Schrödinger equations. Here we present a set of multibreather stability theorems (MST) that provides a simple method to determine multibreathers stability in Klein–Gordon systems. These theorems are based in the application of degenerate perturbation theory to Aubry’s band theory. We illustrate them with several examples.  相似文献   

20.
The mathematical structure of the optical cubic-quintic Schrödinger equation is investigated in a special way by considering a potential depending upon the modulus of the wave-functions involved. In this context, an associated operator is defined.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号