首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Anionic unsaturated lipid bilayers represent suitable model systems that mimic real cell membranes: they are fluid and possess a negative surface charge. Understanding of detailed molecular organization of water-lipid interfaces in such systems may provide an important insight into the mechanisms of proteins' binding to membranes. Molecular dynamics (MD) of full-atom hydrated lipid bilayers is one of the most powerful tools to address this problem in silico. Unfortunately, wide application of computational methods for such systems is limited by serious technical problems. They are mainly related to correct treatment of long-range electrostatic effects. In this study a physically reliable model of an anionic unsaturated bilayer of 1,2-dioleoyl-sn-glycero-3-phosphoserine (DOPS) was elaborated and subjected to long-term MD simulations. Electrostatic interactions were treated with two different algorithms: spherical cutoff function and particle-mesh Ewald summation (PME). To understand the role of lipid charge in the system behavior, similar calculations were also carried out for zwitterionic bilayer composed of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC). It was shown that, for the charged DOPS bilayer, the PME protocol performs much better than the cutoff scheme. In the last case a number of artifacts in the structural organization of the bilayer were observed. All of them were attributed to inadequate treatment of electrostatic interactions of lipid headgroups with counterions. Electrostatic properties, along with structural and dynamic parameters, of both lipid bilayers were investigated. Comparative analysis of the MD data reveals that the water-lipid interface of the DOPC bilayer is looser than that for DOPS. This makes possible deeper penetration of water molecules inside the zwitterionic (DOPC) bilayer, where they strongly interact with carbonyls of lipids. This can lead to thickening of the membrane interface in zwitterionic as compared to negatively charged bilayers.  相似文献   

2.
The application of supported lipid bilayer systems as molecular sensors, diagnostic devices, and medical implants is limited by their lack of stability. In an effort to enhance the stability of supported lipid bilayers, three pairs of phosphatidylcholine lipids were designed to cross-link at the termini of their 2-position acyl chain upon the formation of lipid bilayers. The cross-linked lipids span the lipid bilayer, resembling naturally occurring bolaamphiphiles that stabilize archaebacterial membranes against high temperatures. The three reactions investigated here include the acyl chain cross-linking between thiol and bromine groups, thiol and acryloyl groups, and cyclopentadiene and acryloyl groups. All three reactive lipid pairs were found to cross-link in liposomal membranes, as determined by thin-layer chromatography, ion-spray mass spectrometry, and 1H NMR. The monolayer film properties of the reactive amphiphiles were characterized by surface pressure-area isotherms and showed that stable monolayers formed at the air-water interface with limiting molecular areas comparable to that of pure saturated phosphatidylcholine lipids. Langmuir-Blodgett bilayers of dimyristoylphosphatidylcholine incorporating 15 mol % of the reactive thiol and acryloyl lipids had diffusion coefficients comparable with pure dimyristoylphosphatidylcholine, while bilayers with more than 25 mol % of the reactive lipids were immobile, suggesting that interleaflet cross-linking of the lipids inhibited membrane diffusion. Our results show that the reactive lipids can cross-link within a lipid bilayer and are suitable for assembling supported lipid bilayers using Langmuir-Blodgett deposition. By using terminally reactive amphiphiles to build up supported lipid bilayers with cross-linked leaflets, bolaamphiphiles can be incorporated into asymmetric solid supported membranes to increase their stability in biosensor and medical implant applications.  相似文献   

3.
A lipid bilayer deposited on an electrode surface can serve as a benchmark system to investigate lipid–protein interactions in the presence of physiological electric fields. Recoverin and myelin‐associated glycoprotein (MAG) are used to study the impact of strong and weak protein–lipid interactions on the structure of model lipid bilayers, respectively. The structural changes in lipid bilayers are followed using electrochemical polarization modulation infrared reflection–absorption spectroscopy (PM IRRAS). Recoverin contains a myristoyl group that anchors in the hydrophobic part of a cell membrane. Insertion of the protein into the 1,2‐dimyristoyl‐sn‐glycero‐3‐phosphatidylcholine (DMPC)–cholesterol lipid bilayer leads to an increase in the capacitance of the lipid film adsorbed on a gold electrode surface. The stability and kinetics of the electric‐field‐driven adsorption–desorption process are not affected by the interaction with protein. Upon interaction with recoverin, the hydrophobic hydrocarbon chains become less ordered. The polar head groups are separated from each other, which allows for recoverin association in the membrane. MAG is known to interact with glycolipids present on the surface of a cell membrane. Upon probing the interaction of the DMPC–cholesterol–glycolipid bilayer with MAG a slight decrease in the capacity of the adsorbed lipid film is observed. The stability of the lipid bilayer increases towards negative potentials. At the molecular scale this interaction results in minor changes in the structure of the lipid bilayer. MAG causes small ordering in the hydrocarbon chains region and an increase in the hydration of the polar head groups. Combining an electrochemical approach with a structure‐sensitive technique, such as PM IRRAS, is a powerful tool to follow small but significant changes in the structure of a supramolecular assembly.  相似文献   

4.
We report a new method for forming patterned lipid bilayers on solid substrates. In bubble collapse deposition (BCD), an air bubble is first "inked" with a monolayer of phospholipid molecules and then touched to the surface of a thermally oxidized silicon wafer and the air is slowly withdrawn. As the bubble shrinks, the lipid monolayer pressure increases. Once the monolayer exceeds the collapse pressure, it folds back on itself, depositing a stable lipid bilayer on the surface. These bilayer disks have lateral diffusion coefficients consistent with high quality supported bilayers. By sequentially depositing bilayers in overlapping areas, fluid connections between bilayers of different compositions are formed. Performing vesicle rupture on the open substrate surrounding this bilayer patch results in a fluid but spatially isolated bilayer. Very little intermixing was observed between the vesicle rupture and bubble-deposited bilayers.  相似文献   

5.
Lipid bilayers are of interest in applications where a cell membrane mimicking environment is desired. The performance of the lipid bilayer is largely dependent on the physical and chemical properties of the component lipids. Lipid bilayers consisting of phytanoyl lipids have proven to be appropriate choices since they exhibit high mechanical and chemical stability. In addition, such bilayers have high electrical resistances. Two different phytanoyl lipids, 1,2-diphytanoyl-sn-glycero-3-phosphocholine (DPhPC) and 1,2-diphytanoyl-sn-glycero-3-phosphoethanolamine (DPhPE), and various combinations of the two have been investigated with respect to their behavior in aqueous solutions, their interactions with solid surfaces, and their electrical stability. Dynamic light scattering, nuclear magnetic resonance diffusion, and cryogenic transmission electron microscopy measurements showed that pure DPhPC as well as mixtures of DPhPC and DPhPE consisting of greater than 50% (mol%) DPhPC formed unilamellar vesicles. If the total lipid concentration was greater than 0.15g/l, then the vesicles formed solid-supported bilayers on plasma-treated gold and silica surfaces by the process of spontaneous vesicle adsorption and rupture, as determined by quartz crystal microbalance with dissipation monitoring and atomic force microscopy. The solid-supported bilayers exhibited a high degree of viscoelasticity, probably an effect of relatively high amounts of imbibed water or incomplete vesicle fusion. Lipid compositions consisting of greater than 50% DPhPE formed small flower-like vesicular structures along with discrete liquid crystalline structures, as evidenced by cryogenic transmission electron microscopy. Furthermore, electrophysiology measurements were performed on bilayers using the tip-dip methodology and the bilayers' capacity to retain its electrical resistance towards an applied potential across the bilayer was evaluated as a function of lipid composition. It was shown that the lipid ratio significantly affected the bilayer's electrical stability, with pure DPhPE having the highest stability followed by 3DPhPC:7DPhPE and 7DPhPC:3DPhPE in decreasing order. The bilayer consisting of 5DPhPC:5DPhPE had the lowest stability towards the applied electrical potential.  相似文献   

6.
Phase behavior of lipid bilayers at high pressure is critical to biological processes. Using coarse grained molecular dynamic simulations, we report critical characteristics of dipalmitoylphosphatidylcholine bilayers with applied high pressure, and also show their phase transition by cooling bilayer patches. Our results indicate that the phase transition temperature of dipalmitoylphosphatidylcholine bilayers obviously shifts with pressure increasing in the rate of 37 °C kbar(-1), which are in agreement with experimental data. Moreover, the main phase transition is revealed to be strongly dependent on lipid area. A critical lipid area of ~0.57 nm(2) is found on the main phase transition boundary. Similar structures of acyl chains lead to the same sensitivity of phase transition temperature of different lipids to the pressure. Based on the lateral density and pressure profiles, we also discuss the different effects on bilayer structure induced by high temperature and high pressure, e.g., increasing temperature induces higher degree of interdigitation of lipid tails and thinner bilayers, and increasing pressure maintains the degree of interdigitation and bilayer thickness.  相似文献   

7.
The effect of the molecular organization of lipid components on the properties of the bilayer membrane has been a topic of increasing interest. Several experimental and theoretical studies have suggested that cholesterol is not randomly distributed in the fluid-state lipid bilayer but forms nanoscale domains. Several cholesterol-enriched nanodomain structures have been proposed, including rafts, regular or maze arrays, complexes, and superlattices. At present, the molecular mechanisms by which lipid composition influences the formation and stability of lipid nanodomains remain unclear. In this study, we have used molecular dynamics (MD) simulations to investigate the effects of the molecular organization of cholesterol--superlattice versus random--on the structure of and interactions between lipids and water in lipid bilayers of cholesterol and 1-palmitoyl-2-oleoylphosphatidylcholine (cholesterol/POPC) at a fixed cholesterol mole fraction of 0.40. On the basis of four independent replicates of 200-ns MD simulations for a superlattice or random bilayer, statistically significant differences were observed in the lipid structural parameters, area per lipid, density profile, and acyl chain order profile, as well as the hydrogen bonding between various pairs (POPC and water, cholesterol and water, and POPC and cholesterol). The time evolution of the radial distribution of the cholesterol hydroxy oxygen suggests that the lateral distribution of cholesterol in the superlattice bilayer is more stable than that in the random bilayer. Furthermore, the results indicate that a relatively long simulation time, more than 100 ns, is required for these two-component bilayers to reach equilibrium and that this time is influenced by the initial lateral distribution of lipid components.  相似文献   

8.
Solid supported lipid bilayers are rapidly delaminated when drawn through the air/water interface. We have discovered that a close packed monolayer of specifically bound protein prevents this process. The protection mechanism worked in two ways. First, when protein-protected bilayers were drawn through the air/water interface, a thin bulk water layer was visible over the entire bilayer region, thereby preventing air from contacting the surface. Second, a stream of nitrogen was used to remove all bulk water from a protected bilayer, which remained fully intact as determined by fluorescence microscopy. The condition of this dried bilayer was further probed by fluorescence recovery after photobleaching. It was found that lipids were not two-dimensionally mobile in dry air. However, when the bilayer was placed in a humid environment, 91% of the bleached fluorescence signal was recovered, indicating long-range two-dimensional mobility. The diffusion coefficient of lipids under humid conditions was an order of magnitude slower than the same bilayer under water. Protected bilayers could be rehydrated after drying, and their characteristic diffusion coefficient was reestablished. Insights into the mechanism of bilayer preservation were suggested.  相似文献   

9.
In the absence of external stress, the surface tension of a lipid membrane vanishes at equilibrium, and the membrane exhibits long wavelength undulations that can be described as elastic (as opposed to tension-dominated) deformations. These long wavelength fluctuations are generally suppressed in molecular dynamics simulations of membranes, which have typically been carried out on membrane patches with areas <100 nm2 that are replicated by periodic boundary conditions. As a result, finite system-size effects in molecular dynamics simulations of lipid bilayers have been subject to much discussion in the membrane simulation community for several years, and it has been argued that it is necessary to simulate small membrane patches under tension to properly model the tension-free state of macroscopic membranes. Recent hardware and software advances have made it possible to simulate larger, all-atom systems allowing us to directly address the question of whether the relatively small size of current membrane simulations affects their physical characteristics compared to real macroscopic bilayer systems. In this work, system-size effects on the structure of a DOPC bilayer at 5.4 H2O/lipid are investigated by performing molecular dynamics simulations at constant temperature and isotropic pressure (i.e., vanishing surface tension) of small and large single bilayer patches (72 and 288 lipids, respectively), as well as an explicitly multilamellar system consisting of a stack of five 72-lipid bilayers, all replicated in three dimensions by using periodic boundary conditions. The simulation results are compared to X-ray and neutron diffraction data by using a model-free, reciprocal space approach developed recently in our laboratories. Our analysis demonstrates that finite-size effects are negligible in simulations of DOPC bilayers at low hydration, and suggests that refinements are needed in the simulation force fields.  相似文献   

10.
By making dynamic changes to the area of a droplet interface bilayer (DIB), we are able to measure the specific capacitance of lipid bilayers with improved accuracy and precision over existing methods. The dependence of membrane specific capacitance on the chain-length of the alkane oil present in the bilayer is similar to that observed in black lipid membranes. In contrast to conventional artificial bilayers, DIBs are not confined by an aperture, which enables us to determine that the dependence of whole bilayer capacitance on applied potential is predominantly a result of a spontaneous increase in bilayer area. This area change arises from the creation of new bilayer at the three phase interface and is driven by changes in surface tension with applied potential that can be described by the Young-Lippmann equation. By accounting for this area change, we are able to determine the proportion of the capacitance dependence that arises from a change in specific capacitance with applied potential. This method provides a new tool with which to investigate the vertical compression of the bilayer and understand the changes in bilayer thickness with applied potential. We find that, for 1,2-diphytanoyl-sn-glycero-3-phosphocholine membranes in hexadecane, specific bilayer capacitance varies by 0.6-1.5% over an applied potential of ±100 mV.  相似文献   

11.
Micropatterned phospholipid bilayers on solid substrates offer an attractive platform for various applications, such as high throughput drug screening. We have previously developed a photopolymerization-based methodology for generating micropatterned bilayers composed of polymerized and fluid lipid bilayers. Lithographic photopolymerization of a diacetylene-containing phospholipid (DiynePC) allowed facile fabrication of compartmentalized arrays of fluid lipid membranes. Herein, we report on a key experimental parameter that significantly influences the homogeneity and quality of the fabricated polymeric bilayers, namely the temperature at which monolayers of monomeric DiynePC were formed on the water surface and transferred onto solid substrates by the Langmuir-Blodgett/Langmuir-Schaefer (LB/LS) technique. Using fluorescence microscopy and atomic force microscopy, it was found that polymerized bilayers were homogeneous, if bilayers of DiynePC were prepared below the triple point temperature (ca. 20 degrees C) of the monolayer, where a direct transition from the gaseous state to the liquid condensed state occurred. Bilayers prepared above this temperature had a markedly increased number of crack-like line defects. The differences were attributed to the domain structures in the monolayer that were transferred from the water surface to the substrate. Domain size, rather than the molecular packing in each domain, was concluded to play a critical role in the formation of defects. The spontaneous curvature and area changes of bilayers were postulated to cause destabilization and detachment of the films from the substrate upon polymerization. Our present results highlight the importance of controlling the domain structures for the homogeneity of polymerized bilayers required in technological applications.  相似文献   

12.
The lipid membranes found in archaea have high bilayer stability and low permeability. The molecular structure of their constituent lipids is characterized by ether-linked, branched hydrophobic chains, whereas the conventional lipids obtained from eukaryotic or eubacterial sources have ester linked straight chains. In order to elucidate the influence of the ether linkage, instead of an ester one, on the physical properties of the lipid bilayers, we have carried out comparative 10 ns molecular dynamics simulations of diphytanyl phosphatidylcholine (ether-DPhPC) and diphytanoyl phosphatidylcholine (ester-DPhPC) bilayers in water, respectively. We analyze bilayer structures, hydration of the lipids, membrane dipole potentials, and free energy profiles of water and oxygen across the bilayers. We observe that the membrane dipole potential for the ether-DPhPC bilayer, which arises mainly from the ether linkage, is about half of that of the ester-DPhPC. The calculated free energy barrier for a water molecule in the ether-DPhPC bilayer system is slightly higher than that in the ester-DPhPC counterpart, which is in accord with experimental data.  相似文献   

13.
Preferential binding of F-actin to lipid bilayers containing ponticulin was investigated on both planar supported bilayers and on a cholesterol-based tethering system. The transmembrane protein ponticulin in Dictyostelium discoideum is known to provide a direct link between the actin cytoskeleton and the cell membrane ( Wuestehube, L. J. ; Luna, E. J. J. Cell Biol. 1987, 105, 1741- 1751 ). Purification of ponticulin has allowed an in vitro model of the F-actin cytoskeletal scaffold system to be formed and investigated by AFM, epi-fluorescence microscopy, surface plasmon resonance (SPR), and quartz crystal microbalance with dissipation (QCM-D). Single filament features of F-actin bound to the ponticulin containing lipid bilayer are shown by AFM to have a pitch of 37.3 +/- 1.1 nm and a filament height of 7.0 +/- 1.6 nm. The complementary techniques of QCM-D and SPR were used to obtain dissociation constants for the interaction of F-actin with ponticulin containing bilayers, giving 10.5 +/- 1.7 microM for a physisorbed bilayer and 10.8 +/- 3.6 microM for a tethered bilayer, respectively.  相似文献   

14.
We have used systematic structure‐based coarse graining to derive effective site–site potentials for a 10‐site coarse‐grained dimyristoylphosphatidylcholine (DMPC) lipid model and investigated their state point dependence. The potentials provide for the coarse‐grained model the same site–site radial distribution functions, bond and angle distributions as those computed in atomistic simulations carried out at four different lipid–water molar ratios. It was shown that there is a non‐negligible dependence of the effective potentials on the concentration at which they were generated, which is also manifested in the properties of the lipid bilayers simulated using these potentials. Thus, effective potentials computed at low lipid concentration favor to more condensed and ordered structure of the bilayer with lower average area per lipid, while potentials obtained at higher lipid concentrations provide more fluid‐like structure. The best agreement with the reference data and experiment was achieved using the set of potentials derived from atomistic simulations at 1:30 lipid:water molar ratio providing fully saturated hydration of DMPC lipids. Despite theoretical limitations of pairwise coarse‐grained potentials expressed in their state point dependence, all the resulting potentials provide a stable bilayer structure with correct partitioning of different lipid groups across the bilayer as well as acceptable values of the average lipid area, compressibility and orientational ordering. In addition to bilayer simulations, the model has proven its robustness in modeling of self‐aggregation of lipids from randomly dispersed solution to ordered bilayer structures, bicelles, and vesicles. © 2014 Wiley Periodicals, Inc.  相似文献   

15.
Zinc oxide films with ordered lamellar structures can be electrochemically produced by interfacial surfactant templating. This method utilizes amphiphile assemblies at the solid-liquid interface (i.e., the surface of a working electrode) as a template to electrodeposit inorganic nanostructures. To gain the ability to precisely tailor inorganic lamellar structures, the effect of various chemical and electrochemical parameters on the repeat distances, homogeneity, orientation, and quality of the interfacial amphiphilic bilayers were investigated. Surfactants with anionic headgroups (e.g., 1-hexadecanesulfonate sodium salt, dodecylbenzenesulfonate sodium salt, dioctyl sulfosuccinate sodium salt, mono-dodecyl phosphate, and sodium dodecyl sulfate) are critical because they incorporate Zn(2+) ions into their bilayer assemblies as counterions and guide the lamellar growth of ZnO films. Unlike surfactant structures in solution, the interfacial surfactant assemblies are insensitive to the surfactant concentration in solution. The use of organic cosolvents (e.g., ethylene glycol, dimethyl sulfoxide) can increase the homogeneity of bilayer assemblies when multiple repeat distances are possible in a pure aqueous medium. In addition, organic cosolvents can make the interfacial structure responsive to the change in bulk surfactant concentrations. The presence of quaternary alkylammonium salts (e.g., cetyltrimethylammonium bromide) as cationic cosurfactants improves the ordering of anionic bilayers significantly. Consequently, it also affects the orientation of lamellar structures relative to the substrate as well as the surface texture of the films. The quality of lamellar structures incorporated in ZnO films is also dependent on the deposition potentials that determine deposition rates. A higher degree of ordering is achieved when a slower deposition rate (I < 0.15 mA/cm(2)) is used. The results described here will provide a useful foundation to design and optimize synthetic conditions for the electrochemical construction of broader types of inorganic nanostructures.  相似文献   

16.
Supported lipid bilayers containing phosphatidylcholine headgroups are observed to undergo reorganization from a 2D fluid, lipid bilayer assembly into an array of complex 3D structures upon exposure to extreme pH environments. These conditions induce a combination of molecular packing and electrostatic interactions that can create dynamic morphologies of highly curved lipid membrane structures. This work demonstrates that fluid, single-component lipid bilayer assemblies can create complex morphologies, a phenomenon typically only associated with lipid bilayers of mixed composition.  相似文献   

17.
We have developed a dynamic self-consistent mean-field model, based on molecular-dynamics simulations, to study lipid-cholesterol bilayers. In this model the lipid bilayer is represented as a two-dimensional lattice field in the lipid chain order parameters, while cholesterol molecules are represented by hard rods. The motion of rods in the system is continuous and is not confined to lattice cells. The statistical mechanics of chain ordering is described by a mean field derived from an extension of a model due to Marcelja. The time evolution of the system is governed by stochastic equations. The ensemble of chain configurations required in partition sums, and the energies of interaction, are taken from atomistic level molecular-dynamics simulations of lipid bilayers. The model allows us to simulate systems 500 nm in lateral size for 20 micros time scales, or greater. We have applied the model to dipalmitoyl-phosphatidylcholine-cholesterol (Chol) bilayers at 50 degrees C for Chol concentrations between 2% and 33%. At low concentrations of Chol (2%-4%), the model predicts the formation of isolated clusters of Chol surrounded by relatively ordered lipid chains, randomly dispersed in the disordered bilayer. With increasing Chol composition, regions of Chol-induced order begin to overlap. Starting from about 11% Chol this ordering effect becomes system wide and regions unaffected by Chol are no longer detectable. From the analysis of properties of the model we conclude that the change in lipid chain order with increasing Chol concentration is continuous over the 20-mus scale of the simulations. We also conclude that at 50 degrees C no large-scale Chol-rich and Chol-depleted coexisting phase-separated regions form at any concentration. At no point in any of the simulations do we observe a higher degree of lateral organization, such as Chol-based superlattice structures.  相似文献   

18.
Interaction of the lectin concanavalin A with the polysaccharide glycogen can provide rapid spontaneous transients of the surface potential at bilayer and monolayer lipid membranes. The selective binding process can cause large, rapid potassium ion current fluctuations across bilayer membranes in a manner that is periodic and reproducible. The frequency of these transient ion current signals was shown to be related to sub-nanomolar concentrations of the reactive agents in aqueous solution. The physical mechanism responsible for ion current modulation was investigated by fluorescence methods using lipid vesicles, by the thermal dependence of the potassium ion current across planar bilayers and by pressure-area and dipolar potential measurements of lipid monolayers at an air-water interface. The mechanism is primarily associated with physical perturbations of lipid membranes by lectin-polysaccharide aggregates, resulting in the formation of localised domains of variable electrostatic potential and conductivity.  相似文献   

19.
20.
We have investigated the formation of supported bilayers by coadsorption of dipalmitoyl phosphatidylcholine (DPPC) with the nonionic surfactant beta-D-dodecyl maltoside. The adsorption of mixed phospholipid-surfactant micelles on hydrophilic silica surfaces at 25 degrees C was followed as a function of bulk concentration by neutron reflection. Using chain-deuterated d(25)-beta-D-dodecyl maltoside and d(62)-DPPC, we demonstrate that it is possible to determine the composition of the bilayers at each stage of a sequential dilution process, which enriches the adsorbed layer in phospholipid and leads to complete elimination of the surfactant. The final supported bilayers have thicknesses of 51 +/- 3 A and are stable to heating to 37 degrees C once all surfactant has been removed, and the structures agree well with other published data on DPPC supported bilayers. The coadsorption of cholesterol in a DPPC-surfactant mixture was also achieved, and the location and volume fraction of cholesterol in the DPPC bilayer was determined. Cholesterol is located in a 18 +/- 1 A thick layer below the lipid headgroup region and leads to an increased bilayer thickness of 58 +/- 2 A at 26 mol % of cholesterol.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号