首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
It is well-known that chlorine active species (e.g., Cl(2), ClONO(2), ClONO) can form from heterogeneous reactions between nitrogen oxides and hydrogen chloride on aerosol particle surfaces in the stratosphere. However, less is known about these reactions in the troposphere. In this study, a potential new heterogeneous pathway involving reaction of gaseous HCl and HNO(3) on aluminum oxide particle surfaces, a proxy for mineral dust in the troposphere, is proposed. We combine transmission Fourier transform infrared spectroscopy with X-ray photoelectron spectroscopy to investigate changes in the composition of both gas-phase and surface-bound species during the reaction under different environmental conditions of relative humidity and simulated solar radiation. Exposure of surface nitrate-coated aluminum oxide particles, from prereaction with nitric acid, to gaseous HCl yields several gas-phase products, including ClNO, NO(2), and HNO(3), under dry (RH < 1%) conditions. Under humid more conditions (RH > 20%), NO and N(2)O are the only gas products observed. The experimental data suggest that, in the presence of adsorbed water, ClNO is hydrolyzed on the particle surface to yield NO and NO(2), potentially via a HONO intermediate. NO(2) undergoes further hydrolysis via a surface-mediated process, resulting in N(2)O as an additional nitrogen-containing product. In the presence of broad-band irradiation (λ > 300 nm) gas-phase products can undergo photochemistry, e.g., ClNO photodissociates to NO and chlorine atoms. The gas-phase product distribution also depends on particle mineralogy (Al(2)O(3) vs CaCO(3)) and the presence of other coadsorbed gases (e.g., NH(3)). These newly identified reaction pathways discussed here involve continuous production of active ozone-depleting chlorine and nitrogen species from stable sinks such as gas-phase HCl and HNO(3) as a result of heterogeneous surface reactions. Given that aluminosilicates represent a major fraction of mineral dust aerosol, aluminum oxide can be used as a model system to begin to understand various aspects of possible reactions on mineral dust aerosol surfaces.  相似文献   

2.
Mineral dust aerosol is known to provide a reactive surface in the troposphere for heterogeneous chemistry to occur. Certain components of mineral dust aerosol, such as semiconductor metal oxides, can act as chromophores that initiate chemical reactions, while adsorbed organic and inorganic species may also be photoactive. However, relatively little is known about the impact of heterogeneous photochemistry of mineral dust aerosol in the atmosphere. In this study, we investigate the heterogeneous photochemistry of trace atmospheric gases including HNO(3) and O(3) with components of mineral dust aerosol using an environmental aerosol chamber that incorporates a solar simulator. For reaction of HNO(3) with aluminum oxide, broadband irradiation initiates photoreactions to form gaseous NO and NO(2). A complex dynamic balance between surface adsorbed nitrate and gaseous nitrogen oxide products including NO and NO(2) is observed. For heterogeneous photoreactions of O(3), iron oxide shows catalytic decompositions toward O(3) while aluminum oxide is deactivated by ozone exposure. Furthermore, the role of relative humidity, and, thus, adsorbed water, on heterogeneous photochemistry has been explored. The atmospheric implications of these results are discussed.  相似文献   

3.
Surface reactions of nitrogen oxides with aluminium oxide particles result in the formation of adsorbed nitrate. Specifically, when alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are exposed to gas-phase NO(2) and HNO(3) adsorbed nitrate forms on the surface. In this study, Fourier transform infrared (FTIR) spectroscopy is combined with quantum chemical calculations to further our understanding of the adsorbed nitrate product on aluminium oxide particle surfaces in the presence and absence of co-adsorbed water at 296 K. FTIR spectra of adsorbed nitrate on alpha-Al(2)O(3) and gamma-Al(2)O(3) particles are interpreted using calculated vibrational frequencies of nitrate coordinated to binuclear Al oxide cluster models. Comparison of the calculated and experimental vibrational frequencies of adsorbed nitrate establishes different modes of coordination (monodentate, bidentate and bridging) of the nitrate ion to the surface in the absence of adsorbed water. In the presence of co-adsorbed water, the nitrate ion becomes fully solvated, as shown by a comparison of the experimental nitrate infrared spectra as a function of relative humidity with the calculated nitrate vibrational frequencies for binuclear Al cluster compounds which contain both coordinated nitrate ions and water molecules. These calculations also suggest that adsorbed water can displace nitrate from direct coordination to the surface, leading to an outer-sphere nitrate adsorption complex as well as an inner-sphere complex. Furthermore, the relative humidity dependence of the spectra suggest that water does not evenly wet the surface even at high relative humidity, as there are open or bare surface sites where nitrate ions are not solvated. Besides adsorbed mondendate, bidendate, bridging and solvated nitrate, the presence of ion bound nitrate ion, partially solvated nitrate, molecular nitric acid, hydronium ion and H(3)O(+):NO(3)(-) ion pairs on the oxide surface are also discussed.  相似文献   

4.
As aerosols, such as sea salt and mineral dust, are transported through the atmosphere they undergo heterogeneous reactions with nitrogen oxides to form nitrate salts. The nitrate salt can have quite different physicochemical properties than the original aerosol, resulting in an aerosol that will markedly differ in its climate impact, heterogeneous chemistry, and photoactivity. In this Feature Article, we will review some aspects of the importance of aqueous nitrate aerosols as well as describe a new multi-analysis aerosol reactor system (MAARS) that is used to measure the physicochemical properties of these atmospherically relevant aerosols. Here we show measurements of the hygroscopic properties, cloud condensation nuclei activity, and FTIR extinction of nitrate salt aerosol. In particular, we have measured the hygroscopic growth of 100 nm size-selected nitrate particles including NaNO3, Ca(NO3)2, Mg(NO3)2, and a 1:1 mixture of Ca(NO3)2 and Mg(NO3)2 as a function of relative humidity (RH) at 298 K. Using K?hler theory, we have quantified the water content of these particles with increasing RH. FTIR extinction measurements of the full size distribution of each of the nitrate aerosols are analyzed to yield information about the local solvation environment of the nitrate ions and the long-wavelength light scattering of the particles at different RH. Furthermore, we have measured and compared the cloud condensation nuclei (CCN) activity of CaCO3, a large component of mineral dust aerosol, and Ca(NO3)2, a product of atmospherically aged CaCO3 through reaction with nitrogen oxides, at supersaturations from 0.1% to 0.9%. These quantitative physicochemical data are needed if we are to better understand the chemistry as well as the climate effects of atmospheric aerosols as they are entrained, transported, reacted, and aged in the atmosphere. Our studies here focus on aqueous nitrate salts, the products of the reaction of nitrogen oxides with sea salt and mineral dust aerosol.  相似文献   

5.
The heterogeneous chemistry of gas-phase acetic acid with CaCO(3)(calcite) aerosol was studied under varying conditions of relative humidity (RH) in an environmental reaction chamber. Infrared spectroscopy showed the loss of gas-phase reactant and the appearance of a gaseous product species, CO(2). The acetic acid is observed to adsorb onto the calcite aerosol through both a fast and a slow uptake channel. While the fast channel is relatively independent of RH, the slow channel exhibits enhanced uptake and reaction as the RH is increased. In additional experiments, the calcite aerosol was exposed to both nitric and acetic acids in the presence of water vapor. The rapid conversion of the particulate carbonate to nitrate and subsequent deliquescence significantly enhances the uptake and reaction of acetic acid. These results suggest a possible mechanism for observed correlations between particulate nitrate and organic acids in the atmosphere. Calcium rich mineral dust may be an important sink for simple organic acids.  相似文献   

6.
Concentrated aqueous nitrate aerosols are present in the Earth's atmosphere as a result of heterogeneous reactions of sea salt and mineral dust aerosol with nitrogen oxides (e.g., NO2, NO3, HNO3 and N2O5). Because the water content of these aerosols depends on relative humidity (RH), the composition and nitrate ion concentration will also depend on RH. Unlike the original aerosols, aqueous nitrate aerosols are photochemically active at solar wavelengths. To gain a better understanding of the nitrate ion chromophore in concentrated aqueous nitrate aerosols, we have measured the ATR-FTIR and UV/vis spectra of concentrated nitrate solutions over a large concentration range. Both ATR-FTIR and UV/vis spectroscopy show changes in the nitrate ion spectra with increasing concentration. Ab initio calculations are used to aid in the assignment and interpretation of these spectra. From these data, we predict that the photoreactivity of aqueous nitrate aerosols will strongly depend on relative humidity as the molecular and electronic structure of the nitrate ion becomes increasingly perturbed from that of the isolated ion in highly concentrated atmospherically relevant solutions.  相似文献   

7.
Heterogeneous reactions of sea salt aerosol with various oxides of nitrogen lead to replacement of chloride ion by nitrate ion. Studies of the photochemistry of a model system were carried out using deliquesced mixtures of NaCl and NaNO3 on a Teflon substrate. Varying molar ratios of NaCl to NaNO3 (1 : 9 Cl- : NO3-, 1 : 1 Cl- : NO3-, 3 : 1 Cl- : NO3-, 9 : 1 Cl- : NO3-) and NaNO3 at the same total concentration were irradiated in air at 299 +/- 3 K and at a relative humidity of 75 +/- 8% using broadband UVB light (270-380 nm). Gaseous NO2 production was measured as a function of time using a chemiluminescence NO(y) detector. Surprisingly, an enhanced yield of NO2 was observed as the chloride to nitrate ratio increased. Molecular dynamics (MD) simulations show that as the Cl- : NO3- ratio increases, the nitrate ions are drawn closer to the interface due to the existence of a double layer of interfacial Cl- and subsurface Na+. This leads to a decreased solvent cage effect when the nitrate ion photodissociates to NO2+O*-, increasing the effective quantum yield and hence the production of gaseous NO2. The implications of enhanced NO2 and likely OH production as sea salt aerosols become processed in the atmosphere are discussed.  相似文献   

8.
The heterogeneous chemistry and photochemistry of ozone on oxide components of mineral dust aerosol, including α-Fe(2)O(3), TiO(2), and α-Al(2)O(3), at different relative humidities have been investigated using an environmental aerosol chamber. The rate and extent of ozone decomposition on these oxide surfaces are found to be a function of the nature of the surface as well as the presence of light and relative humidity. Under dark and dry conditions, only α-Fe(2)O(3) exhibits catalytic decomposition toward ozone, whereas the reactivity of TiO(2) and α-Al(2)O(3) is rapidly quenched upon ozone exposure. However, upon irradiation, TiO(2) is active toward O(3) decomposition and α-Al(2)O(3) remains inactive. In the presence of relative humidity, ozone decay on α-Fe(2)O(3) subject to irradiation or under dark conditions is found to decrease. In contrast, ozone decomposition is enhanced for irradiated TiO(2) as relative humidity initially increases but then begins to decrease at higher relative humidity levels. A kinetic model was used to obtain heterogeneous reaction rates for different homogeneous and heterogeneous reaction pathways taking place in the environmental aerosol chamber. The atmospheric implications of these results are discussed.  相似文献   

9.
Uptake experiments of NO3 on mineral dust powder were carried out under continuous molecular flow conditions at 298 +/- 2 K using the thermal decomposition of N2O5 as NO3 source. In situ laser detection using resonance enhanced multiphoton ionization (REMPI) to specifically detect NO2 and NO in the presence of N2O5, NO3 and HNO3 was employed in addition to beam-sampling mass spectrometry. At [NO3] = (7.0 +/- 1.0) x 10(11) cm(-3) we found a steady state uptake coefficient gamma(ss) ranging from (3.4 +/- 1.6) x 10(-2) for natural limestone to (0.12 +/- 0.08) for Saharan Dust with gamma(ss) decreasing as [NO3] increased. NO3 adsorbed on mineral dust leads to uptake of NO2 in an Eley-Rideal mechanism that usually is not taken up in the absence of NO3. The disappearance of NO3 was in part accompanied by the formation of N2O5 and HNO3 in the presence of NO2. NO3 uptake performed on small amounts of Kaolinite and CaCO3 leads to formation of some N2O5 according to NO((3ads)) + NO(2(g)) --> N2O(5(ads)) --> N2O(5(g)). Slow formation of gas phase HNO3 on Kaolinite, CaCO3, Arizona Test Dust and natural limestone has also been observed and is clearly related to the presence of adsorbed water involved in the heterogeneous hydrolysis of N2O(5(ads)).  相似文献   

10.
Adsorption of sulfur dioxide on hematite and goethite particle surfaces   总被引:1,自引:0,他引:1  
The adsorption of sulfur dioxide (SO(2)) on iron oxide particle surfaces at 296 K has been investigated using X-ray photoelectron spectroscopy (XPS). A custom-designed XPS ultra-high vacuum chamber was coupled to an environmental reaction chamber so that the effects of adsorbed water and molecular oxygen on the reaction of SO(2) with iron oxide surfaces could be followed at atmospherically relevant pressures. In the absence of H(2)O and O(2), exposure of hematite (alpha-Fe(2)O(3)) and goethite (alpha-FeOOH) to SO(2) resulted predominantly in the formation of adsorbed sulfite (SO(3)(2-)), although evidence for adsorbed sulfate (SO(4)(2-)) was also found. At saturation, the coverage of adsorbed sulfur species was the same on both alpha-Fe(2)O(3) and alpha-FeOOH as determined from the S2p : Fe2p ratio. Equivalent saturation coverages and product ratios of sulfite to sulfate were observed on these oxide surfaces in the presence of water vapor at pressures between 6 and 18 Torr, corresponding to 28 to 85% relative humidity (RH), suggesting that water had no effect on the adsorption of SO(2). In contrast, molecular oxygen substantially influenced the interactions of SO(2) with iron oxide surfaces, albeit to a much larger extent on alpha-Fe(2)O(3) relative to alpha-FeOOH. For alpha-Fe(2)O(3), adsorption of SO(2) in the presence of molecular oxygen resulted in the quantitative formation of SO(4)(2-) with no detectable SO(3)(2-). Furthermore, molecular oxygen significantly enhanced the extent of SO(2) uptake on alpha-Fe(2)O(3), as indicated by the greater than two-fold increase in the S2p : Fe2p ratio. Although SO(2) uptake is still enhanced on alpha-Fe(2)O(3) in the presence of molecular oxygen and water, the enhancement factor decreases with increasing RH. In the case of alpha-FeOOH, there is an increase in the amount of SO(4)(2-) in the presence of molecular oxygen, however, the predominant surface species remained SO(3)(2-) and there is no enhancement in SO(2) uptake as measured by the S2p : Fe2p ratio. A mechanism involving molecular oxygen activation on oxygen vacancy sites is proposed as a possible explanation for the non-photochemical oxidation of sulfur dioxide on iron oxide surfaces. The concentration of these sites depends on the exact environmental conditions of RH.  相似文献   

11.
We have undertaken a kinetic study of heterogeneous ozone decomposition on alpha-Fe2O3 (hematite) and alpha-Al2O3 (corundum) aerosols under ambient conditions of temperature, pressure, and relative humidity in order to better understand the role of mineral dust aerosol in ozone loss mechanisms in the atmosphere. The kinetic measurements are made in an environmental aerosol reaction chamber by use of infrared and ultraviolet spectroscopic probes. The apparent heterogeneous uptake coefficient, gamma, for ozone reaction with alpha-Fe2O3 and alpha-Al2O3 surfaces is determined as a function of relative humidity (RH). The uptake of ozone by the iron oxide surface is approximately an order of magnitude larger than that by the aluminum oxide sample, under dry conditions. At the pressures used, alpha-Fe2O3 shows clear evidence for catalytic decomposition of ozone while alpha-Al2O3 appears to saturate at a finite ozone coverage. The measured uptake for both minerals decreases markedly as the RH is increased. Comparison with other literature reports and the atmospheric implications of these results are discussed.  相似文献   

12.
Although heterogeneous chemistry on surfaces in the troposphere is known to be important, there are currently only a few techniques available for studying the nature of surface-adsorbed species as well as their chemistry and photochemistry under atmospheric conditions of 1 atm pressure and in the presence of water vapor. We report here a new laboratory approach using a combination of long path Fourier transform infrared spectroscopy (FTIR) and attenuated total reflectance (ATR) FTIR that allows the simultaneous observation and measurement of gases and surface species. Theory is used to identify the surface-adsorbed intermediates and products, and to estimate their relative concentrations. At intermediate relative humidities typical of the tropospheric boundary layer, the nitric acid formed during NO2 heterogeneous hydrolysis is shown to exist both as nitrate ions from the dissociation of nitric acid formed on the surface and as molecular nitric acid. In both cases, the ions and HNO3 are complexed to water molecules. Upon pumping, water is selectively removed, shifting the NO(3-)-HNO3(H2O)y equilibria toward more dehydrated forms of HNO3 and ultimately to nitric acid dimers. Irradiation of the nitric acid-water film using 300-400 nm radiation generates gaseous NO, while irradiation at 254 nm generates both NO and HONO, resulting in conversion of surface-adsorbed nitrogen oxides into photochemically active NO(x). These studies suggest that the assumption that deposition or formation of nitric acid provides a permanent removal mechanism from the atmosphere may not be correct. Furthermore, a potential role of surface-adsorbed nitric acid and other species formed during the heterogeneous hydrolysis of NO2 in the oxidation of organics on surfaces, and in the generation of gas-phase HONO on local to global scales, should be considered.  相似文献   

13.
Field measurements showed that there exists a correlation between nitrate and sulfate on mineral dust. In this work, the synergistic mechanism of adsorption and reaction between SO2 and NO2 on gamma-alumina was studied using in situ diffusion reflectance infrared Fourier spectroscopy (in situ DRIFTS) and temperature programmed desorption (TPD). The results revealed that the reaction pathway of NO2 adsorbed on alumina was altered in the presence of SO2. In the absence of SO2, nitrite was found to be an intermediate in the oxidation of NO2 to surface nitrate species. However, in the presence of SO2, the formation of nitrite was inhibited and a new intermediate, dinitrogen tetraoxide (N2O4), was observed. On the other hand, surface tetravalent sulfur species S(IV), including bisulfite and sulfite, were oxidized to sulfate in air condition when NO2 was present. The atmospheric implication of this synergistic effect was also discussed.  相似文献   

14.
The ozone molecule possesses a unique and distinctive (17)O excess (Δ(17)O), which can be transferred to some of the atmospheric molecules via oxidation. This isotopic signal can be used to trace oxidation reactions in the atmosphere. However, such an approach depends on a robust and quantitative understanding of the oxygen transfer mechanism, which is currently lacking for the gas-phase NO(2) + O(3) reaction, an important step in the nocturnal production of atmospheric nitrate. In the present study, the transfer of Δ(17)O from ozone to nitrate radical (NO(3)) during the gas-phase NO(2) + O(3) → NO(3) + O(2) reaction was investigated in a series of laboratory experiments. The isotopic composition (δ(17)O, δ(18)O) of the bulk ozone and the oxygen gas produced in the reaction was determined via isotope ratio mass spectrometry. The Δ(17)O transfer function for the NO(2) + O(3) reaction was determined to be: Δ(17)O(O(3)?) = (1.23 ± 0.19) × Δ(17)O(O(3))(bulk) + (9.02 ± 0.99). The intramolecular oxygen isotope distribution of ozone was evaluated and results suggest that the excess enrichment resides predominantly on the terminal oxygen atoms of ozone. The results obtained in this study will be useful in the interpretation of high Δ(17)O values measured for atmospheric nitrate, thus leading to a better understanding of the natural cycling of atmospheric reactive nitrogen.  相似文献   

15.
Sulfate is one of the most important aerosols in the atmosphere. A new sulfate formation pathway via synergistic reactions between SO(2) and NO(2) on mineral oxides was proposed. The heterogeneous reactions of SO(2) and NO(2) on CaO, α-Fe(2)O(3), ZnO, MgO, α-Al(2)O(3), TiO(2), and SiO(2) were investigated by in situ Diffuse Reflectance Infrared Fourier Transform Spectroscopy (in situ DRIFTS) at ambient temperature. Formation of sulfate from adsorbed SO(2) was promoted by the coexisting NO(2), while surface N(2)O(4) was observed as the crucial oxidant for the oxidation of surface sulfite. This process was significantly promoted by the presence of O(2). The synergistic effect between SO(2) and NO(2) was not observed on other mineral particles (such as CaCO(3) and CaSO(4)) probably due to the lack of the surface reactive oxygen sites. The synergistic reaction between SO(2) and NO(2) on mineral oxides resulted in the formation of internal mixtures of sulfate, nitrate, and mineral oxides. The change of mixture state will affect the physicochemical properties of atmospheric particles and therefore further influence their environmental and climate effects.  相似文献   

16.
Airborne clay mineral particles have long atmospheric lifetimes due to their relatively small size. To assess their impact on trace atmospheric gases, we investigated heterogeneous reactions on prototype clay minerals. Diffuse reflectance infrared spectroscopy identified surface-adsorbed products formed from the uptake of gaseous nitric acid and nitrogen dioxide on kaolinite and pyrophyllite. For kaolinite, a 1:1 phyllosilicate, HNO3 molecularly adsorbed onto the octahedral aluminum hydroxide and tetrahedral silicon oxide surfaces. Also detected on the aluminum hydroxide surface were irreversibly adsorbed monodentate, bidentate, bridged, and water-coordinated nitrate species as well as surface-adsorbed water. Similar adsorbed products formed during the uptake of NO2 on kaolinite at relative humidity (RH) of 0%, and the reaction was second order with respect to reactive surface sites and 1.5 +/- 0.1 for NO2. Reactive uptake coefficients, calculated using Brunauer, Emmett, and Teller surface areas, increased from (8.0 +/- 0.2) x 10(-8) to (2.3 +/- 0.4) x 10(-7) for NO2 concentrations ranging from 0.56 x 10(13) to 8.8 x 10(13) molecules cm(-3). UV-visible spectroscopy detected gaseous HONO as a product for the reaction of NO2 on wet kaolinite. The uptake of HNO3 on pyrophyllite, a 2:1 phyllosilicate, resulted in stronger signal for nitric acid molecularly adsorbed on the silicon oxide surface compared to kaolinite. Monodentate, bridged, and water-coordinated nitrate species bound to aluminum sites also formed during this reaction indicating that reactive sites on edge facets are important for this system. The uptake of NO2 on pyrophyllite, gammaBET = (7 +/- 1) x 10(-9), was significantly lower than kaolinite because NO2 did not react with the dominant tetrahedral silicon oxide surface. These results highlight general trends regarding the reactivity of tetrahedral silicon oxide and octahedral aluminum hydroxide clay surfaces and indicate that the heterogeneous chemistry of clay aerosols varies with mineralogy and cannot be predicted by elemental analysis.  相似文献   

17.
为了深入理解沿海城市大气环境中NO2和海盐颗粒物的非均相反应规律,本研究使用漫反射红外傅立叶变换光谱(DRIFTS)比较研究了0%和20%相对湿度(relative humidty,RH)下NO2在湿海盐颗粒物表面的非均相反应.动力学测量表明硝酸盐的生成对NO2是二级反应,并且0%和20%相对湿度条件下,NO2分子浓度为1.96×1015molcules·cm-3时,反应增长阶段反应摄取系数分别为(5.51±0.19)×10-7和1.26×10-6.结果还显示相对湿度在30%以下时,海盐表面MgCl2·6H2O、CaCl2·2H2O所在点位通过释放结合水和吸附水汽,在海盐表面形成液态水的斑点,增强了反应持续能力.因此氯化钠表面非均相反应的研究可能会低估海盐颗粒物的非均相反应活性.  相似文献   

18.
A number of experimental studies have shown recently that ppm-level additions of nitric oxide (NO) enhance the rate of nitrous oxide (N(2)O) decomposition catalyzed by Fe-ZSM-5 at low temperatures. In the present work, the NO-assisted N(2)O decomposition over mononuclear iron sites in Fe-ZSM-5 was studied on a molecular level using density functional theory (DFT) and transition-state theory. A reaction network consisting of over 100 elementary reactions was considered. The structure and energies of potential-energy minima were determined for all stable species, as were the structures and energies of all transition states. Reactions involving changes in spin potential-energy surfaces were also taken into account. In the absence of NO and at temperatures below 690 K, most active single iron sites (Z(-)[FeO](+)) are poisoned by small concentrations of water in the gas phase; however, in the presence of NO, these poisoned sites are converted into a novel active iron center (Z(-)[FeOH](+)). These latter sites are capable of promoting the dissociation of N(2)O into a surface oxygen atom and gas-phase N(2). The surface oxygen atom is removed by reaction with NO or nitrogen dioxide (NO(2)). N(2)O dissociation is the rate-limiting step in the reaction mechanism. At higher temperatures, water desorbs from inactive iron sites and the reaction mechanism for N(2)O decomposition becomes independent of NO, reverting to the reaction mechanism previously reported by Heyden et al. [J. Phys. Chem. B 2005, 109, 1857].  相似文献   

19.
Alumina is an important component of airborne dust particles as well as of building materials and soils found in the tropospheric boundary layer. While the uptake and reactions of oxides of nitrogen and their photochemistry on alumina have been reported in the past, little is known about the chemistry when organics are also present. Fourier transform infrared (FTIR) spectroscopy at ~23 °C was used to study reactions of NO(2) on γ-Al(2)O(3) particles that had been derivatized using 7-octenyltrichlorosilane to form a self-assembled monolayer (SAM). For comparison, the reactions with untreated γ-Al(2)O(3) were also studied. In both cases, the particles were exposed to water vapor prior to NO(2) to provide adsorbed water for reaction. As expected, surface-bound HONO, NO(2)(-), and NO(3)(-) were formed. Surprisingly, oxidation of the organic by surface-bound nitrogen oxides was observed in the dark, forming organo-nitrogen products identified as nitronates (R(2)C[double bond, length as m-dash]NO(2)(-)). Oxidation was more rapid under irradiation (λ > 290 nm) and formed organic nitrates and carbonyl compounds and/or peroxy nitrates in addition to the products observed in the dark. Mass spectrometry of the gas phase during irradiation revealed the production of NO, CO(2), and CO. These studies provide evidence for oxidation of organic compounds on particles and boundary layer surfaces that are exposed to air containing oxides of nitrogen, as well as new pathways for the formation of nitrogen-containing compounds on these surfaces.  相似文献   

20.
Solid-state Fourier transform infrared spectroscopy (FTIR), evolved gas analysis-FTIR (EGA-FTIR), thermal gravimetric analysis (TGA), and differential scanning calorimetry (DSC) have been used to investigate the desorption of nitric acid from boehmite and from gibbsite. Samples containing between 3 and 36% of adsorbed nitric acid by mass were prepared by placing the mineral in a 70% nitric acid solution or by the adsorption of nitric acid vapors in humid air. FTIR established that water-solvated nitrate was the main species adsorbed on the surface of either mineral under these conditions. The water-solvated nitrate vaporized as nitric acid at approximately 400 K with an enthalpy of desorption of approximately 50 kJ/mol for both surfaces. A second nitric acid desorption occurred at approximately 450 K and had an enthalpy of desorption of 85 kJ/mol (95 kJ/mol) for boehmite (gibbsite). This was assigned as desorption of partially solvated aluminum hydroxylated nitrate. Monodentate and bridging nitrate were also observed on the boehmite. These species desorbed at approximately 725 K as NO2 and O2 with an enthalpy of reaction of approximately 55 kJ/mol of NO2 desorbed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号