首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Redundant actuation is considered as a way to improve the properties of parallel manipulators as it increases and homogenizes the kinematic dexterity and the stiffness, and eventually eliminates singularities. It further allows for a purposeful distribution of control forces, taking into account secondary tasks, such as optimal force distribution, stiffness control, and backlash avoiding control. The actual model-based control builds upon an exact model of the manipulator. In this paper the effect of kinematic uncertainties on the applicability of established model-based control schemes is analyzed. It is shown that kinematic model uncertainties lead to parasitic perturbation forces that cannot be compensated by the controls. To tackle this problem amended versions of the augmented PD and computed torque control schemes are proposed.  相似文献   

2.
In this study closed-form solutions to the forward kinematic problems are obtained for a particular type of six degree-of-freedom parallel manipulator called 6-3 Linapod. The 6-3 Linapod parallel manipulators have a 6-3 PSS (or PUS) structure, and forward kinematic solutions are obtained by using the solution procedure for 6-3 SPS (or UPS) manipulators. In this procedure, a 6-3 Linapod is first transformed into its equivalent mechanism, namely an inclined 3RS manipulator, and then the condition that the three spherical joints on the moving platform form an equilateral triangle leads us to obtain three polynomial equations in three unknowns. These equations are solved by using Sylvester dialytic elimination method. Each set of real roots corresponds to a particular configuration of the manipulator. Solutions so obtained are verified by performing inverse position analysis. A method to identify configurations containing crossed links is presented in this study, which is based on the interpretation of link crossing as intersection of a link with a triangle, whose vertices are positions of joints on the corresponding links.  相似文献   

3.
This paper presents a new method for the optimum design of parallel manipulators by taking both the kinematics and dynamic characteristics into account. The optimum design of a 3-DOF 4-RRR planar parallel manipulator with actuation redundancy is investigated to demonstrate the method. The kinematic performance indices such as the conditioning index, the velocity index, and workspace area are analyzed. Further, the dynamic dexterity, which is used to evaluate the dynamic characteristics, is investigated. The corresponding atlases are represented graphically in the established design space. Based on these atlases, the geometrical parameters without dimension are determined. Then the optimum dimensional parameters are achieved based on the optimum non-dimensional result. By using the method proposed in this paper, the designer can obtain the optimum result with respect to both kinematic performance indices and dynamic performance indices. Since the dynamic performance is considered in the process of optimum design by using the method proposed in this paper, it is expected to realize the high dynamics of parallel manipulators.  相似文献   

4.
The majority of proposed dexterity measures rely on the use of the condition number of the manipulator’s Jacobian matrix mapping actuator velocities to end effector velocities. Unfortunately, for the vast majority of manipulators, the conventional Jacobian matrix has inconsistent units making the aforementioned measures dependent on units and scale. Recently, a Jacobian matrix mapping the joint velocities to independent Cartesian velocity components of three points on the end effector was proposed. In most cases, this Jacobian matrix has consistent units and in many cases it is dimensionless. This dimensionally-homogeneous Jacobian matrix yields meaningful dexterity measures that allow quantitative dexterity comparisons between manipulators with different architectures. Although these new measures were originally proposed within the context of parallel manipulator design and analysis, they can also be used for serial architectures. In this paper, the analysis of the Tricept manipulator’s dexterous workspace, as a function of architectural variables, is provided through the use of a quantitative metric for dexterity. Furthermore, the generality of this metric is also demonstrated by first employing it to analyze a serial manipulator and then comparing it to a parallel manipulator having the same degrees-of-freedom. The paper also proposes a strategy to deal with singularities introduced mathematically by the novel Jacobian formulation.  相似文献   

5.
The flexible redundant manipulator, i.e., the flexible manipulator with redundant rigid degrees of freedom, possesses the same kinematic redundancy property as the rigid redundant manipulator. Some undesired effects on the flexible redundant manipulator are expected to alleviate via kinematic redundancy. Due to the presence of structural flexibility, a manipulator will inevitably vibrate when performing tasks. Therefore, how to reduce its vibration responses is a significant problem. Moreover, the manipulator??s mobility, i.e., its ability to move, is another important issue, because good mobility is a desirable goal for almost all robotic manipulator systems. In this paper, how to reduce vibration and improve mobility is studied for the flexible redundant manipulator. Firstly, a method for vibration control via redundancy resolution is put forward. Secondly, the self-motions satisfying vibration reduction are analyzed, and its additional optimization ability is revealed. Based on this ability, a strategy is proposed to both reduce vibration and improve mobility for the flexible redundant manipulator. Finally, simulation results demonstrate the effectiveness of this strategy.  相似文献   

6.
Generating manipulator trajectories considering multiple objectives with kinematics and dynamics constraints is a non-trivial optimization. In this paper, a constrained multi-objective genetic algorithm (MOGA) based technique is proposed to address this problem for a general motor-driven parallel kinematic manipulator. The planning process is composed of searching for a motion ensuring the accomplishment of the assigned task, minimizing the traverse time, and expended energy subject to various constraints imposed by the associated kinematics and dynamics of the manipulator. This problem is treated via an adequate parametric path representation in the task space of the moving platform, and then the use of the constrained MOGA for solving the resulted nonlinear multi-objective optimization problem. Simulation results are presented for the trajectories of the parallel kinematic manipulator, and a subsequent comparison with the weighted sum method is also carried out.  相似文献   

7.
The problems of dynamic and kinematic control of a multilink robot manipulator are formulated. The distributed elasticity and inertia of the manipulator links are taken into account on the basis of the Timoshenko-beam model on the assumption that each of its elements moves complexly. The results obtained here are compared with data on the dynamic characteristics of a manipulator with rigid links and a manipulator with elastic links, whose elastic properties were simulated on the basis of the Euler–Bernoulli-beam model  相似文献   

8.
In this work, two essential steps, the kinematics and the singularity analysis, dealing with the design process of a parallel manipulator are investigated by means of the theory of screws. The proposed mechanism for the analysis is a parallel manipulator with three degrees of freedom. A simple and compact expression is derived here for the computation of the reduced acceleration state of the moving platform, w.r.t. the fixed platform, by taking advantage of the properties of reciprocal screws, via the Klein form of the Lie algebra e(3). To this end, the reduced acceleration state of the moving platform is written in screw form through each one of the three actuator limbs of the manipulator. Afterwards, the acceleration analysis is completed by taking into proper account the decoupled motion of the parallel manipulator. Of course, as an intermediate step this contribution also provides the velocity analysis of the parallel manipulator. The expressions obtained via screw theory are compact and can be easily translated into computer codes. A numerical example is provided to demonstrate the efficacy of screw theory to efficiently analyze the kinematics of the chosen parallel manipulator. Finally, the numerical results from the kinematic analysis are compared with results produced with a commercially available dynamic and kinematic simulation program.  相似文献   

9.
陈力  刘延柱 《力学季刊》2000,21(4):482-486
本文利用多刚体系统动力学方法对载体位置、姿态均不受控制的浮动基空间机械臂系统的运动学、动力学作了分析,并结合系统的动量与动量矩守恒关系建立了系统的动力学方程及运动的广义Jacobi关系。以此为基础,对空间机械臂末端抓手追踪惯性空间期望轨迹的控制问题作了研究。考虑到空间机械臂系统的结构复杂性及某些参数(如液体控制燃料的数量)的变动性,根据具有较强鲁棒性的变结构滑模控制理论,设计了轨迹跟踪控制的变结构滑模控制方案。此控制方案的优点在于:在操作过程中不需要对空间机械臂载体的位置、姿态进行主动控制,因此将大大减少位置、姿态控制装置的燃料消耗。通过对平面三杆自由浮动空间机械臂系统的仿真计算,证实了文中提出的变结构滑模控制方案的有效性。  相似文献   

10.
This paper introduces a new 9-DOF motion simulator that consists of a 3-DOF parallel manipulator and a 6-DOF parallel manipulator. For the 6-DOF manipulator, a new ‘3–3’-PSS parallel mechanism and a new parameter design method for a given workspace are presented. With the kinematic study of this parallel mechanism and the method of Lagrange multipliers, we have found several key points that represent the worst performance of the manipulator within the given workspace. When a position workspace is given, by checking the manipulator's performances at these key points, one can quickly find out whether the manipulator with certain parameters meets the requirements within this workspace. Furthermore, several figures that can find the appropriate parameters are plotted. This key point method can make the design of parameters much quicker and easier for manipulators.  相似文献   

11.
Variable geometry truss manipulator(VGTM) has potential to work in the future space applications, of which a dynamic model is important to dynamic analysis and control of the system. In this paper, an approach is presented to model the dynamic equations of a VGTM by independent variables, which consists of two double-octahedral truss units and a 3-revolute-prismatic-spherical(3-RPS) parallel manipulator. In this approach, the kinematic recursive relations of two adjacent bodies and geometric constrains are used to deduce the kinematic equations of the VGTM, and Jourdain's velocity variation principle is adopted to establish the dynamic equations of the system. The validity of the proposed dynamic model is verified by comparison of numerical simulations with the software ADAMS. Besides, an active controller for trajectory tracking of the system is designed by the computed torque method. The effectiveness of the controller is numerically proved.  相似文献   

12.
The Feed Support System (FSS) addressed here is the receiver carrier of the Five-hundred-meter Aperture Spherical radio Telescope (FAST) in China. The FSS is a complex hybrid manipulator, which consists of a cable-driven Stewart manipulator, an A–B rotator and a rigid Stewart manipulator. The cable-driven Stewart manipulator, which is a long-span flexible cable structure, is sensitive to the wind disturbance and induces the FSS vibration. The rigid Stewart manipulator is designed to suppress the vibration and improve the terminal accuracy of the FSS. In the paper, the elastic dynamic model of the cable-driven Stewart manipulator is deduced by simplifying the flexible cable as the spring damping model, while the rigid-body dynamic model of the A–B rotator and the rigid Stewart manipulator is obtained in detail, using the Newton–Euler method. The internal coupling forces of the FSS are figured out. The wind disturbance model is established according to the Davenport spectrum. By adopting the kinematic and dynamic parameters of the FAST prototype, the simulation model of the FSS is completed. Kinematic and dynamic vibration control strategies are evaluated with simulations. Results show that the dynamic vibration suppression strategy well satisfies the FSS terminal accuracy requirement, keeps the rigid Stewart manipulator working with reasonable driving forces, and should be adopted in the control system of the FAST prototype.  相似文献   

13.
This paper deals with the sensitivity analysis of 3-RPR planar parallel manipulators. First, the manipulators under study as well as their degeneracy conditions are presented. Then, an optimization problem is formulated in order to obtain their maximal regular dexterous workspace. Moreover, the sensitivity coefficients of the pose of the manipulator moving platform to variations in the geometric parameters and in the actuated variables are expressed algebraically. Two aggregate sensitivity indices are determined, one related to the orientation of the manipulator moving platform and another one related to its position. Then, we compare two non-degenerate and two degenerate 3-RPR planar parallel manipulators with regard to their dexterity, workspace size and sensitivity. Finally, two actuating modes are compared with regard to their sensitivity.  相似文献   

14.
Ibarreche  J. I.  Hernández  A.  Petuya  V.  Urízar  M. 《Meccanica》2019,54(15):2507-2520

The demand for increasingly more versatile machinery has boosted the development of the so-called reconfigurable mechanisms. In this paper, the authors present a general methodology to assess the multioperational capacity of a 6-DOF parallel manipulator basing on the possible motion patterns having Lie group structure that the manipulator owns. This ability of having different operation modes enables the manipulator to adapt to diverse tasks. To show the potential of the methodology, this approach has been applied to the 6-DOF 3-CPCR which is capable of generating multiple motion patterns. In addition to carrying out the complete theoretical study in which all the different operation modes are obtained, and validating the procedure with GIM software designed for kinematic analysis and design of mechanisms, a demonstration prototype of the 3-CPCR parallel manipulator has been also built.

  相似文献   

15.
This paper investigates some kinematic properties of a five-degree-of-freedom parallel mechanism generating the 3T2R motion and comprising five identical limbs of the RPUR type. The general mechanism originates from the type synthesis performed for symmetrical 5-DOF parallel mechanism. In this study, two classes of simplified designs are proposed whose forward kinematic problem have either a univariate or a closed-form solution. The principal contributions of this study are the solution of the forward kinematic problem for some simplified designs—which may have more solutions than the FKP of the general 6-DOF Stewart platform with 40 solutions—and the determination of the constant-orientation workspace which is based on the topology of the vertex space (Bohemian dome) and a geometric constructive approach.  相似文献   

16.
In this paper, we propose a new optimal control method for robust control of nonlinear robot manipulators. Many industrial robot systems are required to perform relatively large angular movement with sufficient accuracy. In real circumstances, highly nonlinear manipulator dynamics and uncertainties such as unknown load placed on the manipulator, external disturbance, and joint friction make the precise control of manipulators a very challenging task. The main contribution of this work is to develop a new robust control strategy to accomplish the precise control of robot manipulators under load uncertainty using a nonlinear optimal control formulation and solution. This methodology is based on the underlying relation between the robust stability and performance optimality. A class of robust control problems can be transformed to an equivalent optimal control problem by incorporating the uncertainty bounds into the cost functional. The θ-D optimal control approach is utilized to find an approximate closed-form feedback solution to the resultant nonlinear optimal control problem via a perturbation process. Numerical simulations show that the proposed robust controller is able to control the robot manipulator precisely under large load variations.  相似文献   

17.
Ettore Pennestrì 《Meccanica》1991,26(2-3):155-160
Geared robotic wrists are often mounted on heavy duty robots with high dexterity. Although these devices have only recently been adopted in industrial practice, systematic studies on their kinematic structure and design methodologies have already been initiated. In this paper parametric equations, to be used for the automated kinematic analysis of such mechanical systems, have been deduced. The formulation of the method is quite general and is based on the graph representation of a kinematic structure.
Sommario I polsi robotici ad ingranaggi ed a complessità giroscopica vengono frequentemente utilizzati in robots a cui sono richieste caratteristiche di destrezza ed elevata capacità di carico. Sebbene tali dispositivi vengano da tempo utilizzati nella corrente pratica industriale, solo da pochi anni sono stati iniziati studi sistematici sulla loro struttura cinematica e sulle metodologie di progettazione.Il lavoro discute un metodo generale per l'analisi cimematica dei rotismi in parola ed é fondato, in particolare, sulla rappresentazione mediante grafi di strutture cinematiche.
  相似文献   

18.
A closed-form solution is given for the problem of a spherical cavity in an infinite elastoviscoplastic medium with kinematic hardening, when the cavity is subjected to an internal pressure that varies in any prescribed way.Under certain assumptions this problem takes account of the unit weight of the medium, and is particularly applicable to the deep underground storage of natural gas in rock salt.Some typical loading cases are shown.  相似文献   

19.
张智豪  于潇雁 《力学学报》2022,54(3):778-786
针对机械臂一般操作过程中运动学的非完整特性进行运动规划时没有考虑机械臂与待抓取目标之间的关系与关节的实际特性, 研究了存在关节死区的漂浮基平面三连杆空间机械臂拦截目标前最后阶段的载体无扰动空间规划与控制. 首先根据拉格朗日第二类方程, 建立存在关节死区的载体位姿均不受控的漂浮基平面三连杆空间机械臂的动力学模型, 推导出三连杆空间机械臂反作用零空间的数学模型, 并对反作用零空间进行向量范数约束算法研究; 进而提出了一种具有抗干扰性与高收敛性的非奇异快速终端滑模控制算法实现系统的姿态无扰控制, 该方法采用变系数双幂次趋近率与非奇异快速终端滑模面相结合的方式, 提高系统状态收敛速度与抗干扰性. 为了消除机械臂关节存在的死区特性, 设计了自适应死区补偿器, 通过自适应控制来逼近死区特性的上界, 以消除关节死区对系统带来的影响, 确保跟踪控制的有效执行. 最后基于Lyapunov函数法证明了系统的稳定性, 并通过系统数值仿真结果验证了存在死区情况下机械臂的各关节角跟踪上无反应空间下的期望轨迹的同时载体的姿态处于稳定状态, 验证了所提方法的有效性.   相似文献   

20.
A class of nets is studied which are statically indeterminate and may possess a unique configuration despite their high degree of kinematic indeterminacy. The intricately interrelated statical and geometric properties of such nets are revealed and investigated on the basis of closed-form solutions obtained for several main types of axisymmetric nets. A special emphasis is placed on the important case of torque-free nets. Together with a previously published paper [8] this study constitutes a compendium of results for axisymmetric static nets.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号