首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nonlinear robust and optimal control of robot manipulators
Authors:Hejia Pan  Ming Xin
Institution:1. Department of Electrical and Computer Engineering, Mississippi State University, Starkville, MS, 39762, USA
2. Department of Mechanical and Aerospace Engineering, University of Missouri, Columbia, MO, USA
Abstract:In this paper, we propose a new optimal control method for robust control of nonlinear robot manipulators. Many industrial robot systems are required to perform relatively large angular movement with sufficient accuracy. In real circumstances, highly nonlinear manipulator dynamics and uncertainties such as unknown load placed on the manipulator, external disturbance, and joint friction make the precise control of manipulators a very challenging task. The main contribution of this work is to develop a new robust control strategy to accomplish the precise control of robot manipulators under load uncertainty using a nonlinear optimal control formulation and solution. This methodology is based on the underlying relation between the robust stability and performance optimality. A class of robust control problems can be transformed to an equivalent optimal control problem by incorporating the uncertainty bounds into the cost functional. The θ-D optimal control approach is utilized to find an approximate closed-form feedback solution to the resultant nonlinear optimal control problem via a perturbation process. Numerical simulations show that the proposed robust controller is able to control the robot manipulator precisely under large load variations.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号