首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors, Ca0.736?ySi9.6Al2.4O0.8N15.2:0.064 Eu2+, yMn2+, were firstly synthesized by the high temperature solid state reaction method. The effects of doped Eu2+ and Eu2+–Mn2+ concentrations on the photoluminescence properties of the as-prepared phosphors were investigated systematically. Powder X-ray diffraction shows that pure Ca-α-SiAlON phase is synthesized after sintering at 1700 °C for 2 h under 0.5 MPa N2 atmosphere. The excitation spectra of Eu2+-doped Ca-α-SiAlON phosphors are characterized by two dominant bands centered at 286 nm and 395 nm, respectively. The photoluminescent spectrum of Eu2+-doped Ca-α-SiAlON phosphor exhibits an intense emission band centered at 580 nm due to the allowed 4f 65d→4f 7 transition of Eu2+, showing that the phosphor is a good candidate for creating white light when coupled to a blue LED chip. The intensities of both excitation and emission spectra monotonously decrease with the increment of codoped Mn2+ content (i.e. y value), indicating that energy transfer between Eu2+ and Mn2+ is inefficient in the case of Eu2+–Mn2+ codoped Ca-α-SiAlON phosphors.  相似文献   

2.
Eu3+-doped ZnAl2O4 phosphors were successfully synthesized in air atmosphere at 900 °C. The phosphors were characterized using X-ray diffraction (XRD), scanning electron microscopy (SEM), thermally stimulated luminescence (TSL) and photoluminescence (PL) techniques. The average particle size of the system as determined from SEM was found to be 100–150 nm (for samples annealed at 900 °C). PL spectra of the doped phosphors showed emission peaks corresponding to Eu3+ ions. Lifetime studies revealed Eu3+ ions to be in two different sites. The asymmetric ratio (I616/I592) was observed to be about 3.75. This suggested that Eu3+ ion entered the host mainly substituting Al3+ site distorting the local environment and is partly located on surface of the phosphors. A prominent glow peak at 430 K was observed in the TSL of γ-irradiated Eu3+-doped ZnAl2O4 phosphors. Trap parameters for this peak have been determined and the probable mechanism for the glow peak is proposed. CIE chromaticity coordinates for the system were evaluated. It was observed that, the system could be employed as a potential red emitting phosphor. Commercial utility of the phosphor was investigated by comparing it with commercial red phosphor. The PL intensity of the as prepared phosphors was 63% of that of the commercial phosphor. Apart from this, various radiative properties such as the Judd–Ofelt intensity parameters, spontaneous emission probabilities, luminescence branching ratios, radiative lifetimes and quantum efficiency were evaluated for the system.  相似文献   

3.
We report on the preparation of Eu2+-doped BaSi2O5 glass-ceramics by crystallizing an Eu3+-doped barium-silicate glass at temperatures in the range from 750 to 1100 °C. Single phase BaSi2O5 glass ceramics can be obtained by thermal annealing at temperatures of about 950 °C. The luminescence intensity of Eu2+ increases dramatically if monoclinic BaSi2O5 is formed. Monoclinic Eu2+:BaSi2O5 shows efficient, broad band luminescence between 450 and 550 nm by excitation in the near UV. Annealing at temperatures >1000 °C leads to orthorhombic BaSi2O5 with much smaller Eu2+ luminescence. Static and time-resolved luminescence measurements indicate that Eu2+ ions are incorporated into the BaSi2O5 crystallites while Eu3+ ions remain in the amorphous phase.  相似文献   

4.
K.N. Shinde  S.J. Dhoble 《Optik》2012,123(21):1975-1979
Dy3+ and Eu2+ activated triple phosphate NaBa0.45Sr0.55PO4 phosphors were prepared by facile combustion synthesis. Excellent emission observed when NaBa0.45Sr0.55PO4:Dy3+ and NaBa0.45Sr0.55PO4:Eu2+ excited at 348 nm and 354 nm wavelength respectively. From a powder X-ray diffraction (XRD) analysis, the formation of compound with a trigonal–hexagonal scalenohedral structure was confirmed. In the photoluminescence spectra, the NaBa0.45Sr0.55PO4:Dy3+ phosphor emits two distinctive colours: a blue band centred at 482 nm and a yellow band at 576 nm originating from Dy3+ whereas NaBa0.45Sr0.55PO4:Eu2+ emits blue colour at 470 nm. Also, surface morphology has been studied by scanning electron microscope (SEM). Phosphors exhibit a strong absorption in the range of 340–400 nm and chromatic properties indicated that present phosphor is a hopeful candidate for near ultra violet light emitting diodes (nUV LEDs).  相似文献   

5.
A series of orange reddish emitting phosphors Eu3+-doped Sr3Bi(PO4)3 have been successfully synthesized by conventional solid-state reaction, and its photoluminescence (PL) properties have been investigated. The excitation spectra reveal strong excitation bands at 392 nm, which match well with the popular emissions from near-UV light-emitting diode chips. The emission spectra of Sr3Bi(PO4)3:Eu3+ phosphors invariably exhibit five peaks assigned to the 5D07FJ (J=0, 1, 2, 3, 4) transitions of Eu3+ and have dominating emission peak at 612 nm under 392 nm excitation. The luminescence intensity was enhanced with increasing Eu3+ content and the emission reached the maximum intensity at x=0.05 in Sr3Bi(PO4)3:xEu3+. The energy transfer behavior in the phosphors was discussed. The Commission Internationale de lEclairage (CIE) chromaticity coordinates, the quantum efficiencies, and the decay curves of the entitled phosphors excited under 392 nm are also investigated. The experimental results indicate that the Eu3+-doped Sr3Bi(PO4)3 phosphors are promising orange reddish-emitting phosphors pumped by near-UV light.  相似文献   

6.
White emitting nanocrystalline ZrO2:Eu3+ phosphors were synthesized by a simple precipitation route without using a capping agent. X-ray diffraction (XRD) study of ZrO2 and ZrO2:Eu3+samples revealed the presence of monoclinic and tetragonal phases. The monoclinic phase increases with increase in the annealing temperature while the tetragonal phase increases with increase in the concentration of Eu3+. This can be attributed to the presence of oxygen vacancy evolved when Zr4+ is replaced by Eu3+. Photoluminescence (PL) emission peaks of Eu3+ are observed at 591, 596, 606 and 613 nm on monitoring excitation wavelengths at 250, 286, 394 and 470 nm. The peaks at 591 and 606 nm were found to correlate with the tetragonal phase and those at 596 and 613 nm with the monoclinic phase. Intensities of these peaks are found to change as the crystal structure changes. The lifetime value corresponding to 591 nm peak increases with Eu3+ concentration at a particular heating temperature indicating increase of tetragonal phase with respect to monoclinic phase. The CIE co-ordinates of the doped samples were found to be close to that of white color (0.33, 0.33). The changes in the crystal structure of the doped samples due to doping and annealing did not affect the white color emission.  相似文献   

7.
V.B. Pawade  S.J. Dhoble 《Optik》2012,123(20):1879-1883
Here we reported photoluminescence properties of Eu2+ activated in novel and existing MgXAl10O17 (X = Sr, Ca) phosphor which has been prepared by combustion synthesis at 550 °C under UV and near UV excitation wavelength. The PL emission properties of MgSrAl10O17:Eu2+ were monitored at 254 nm and 354 nm respectively keeping emission wavelength at 469 nm. Whereas novel MgCaAl10O17:Eu2+ exhibit emission band at 452 nm keeping excitation at 378 nm. These blue emission corresponds to 4f65d1  4f7 transition of Eu2+ ions. Further phosphor was analyzed by XRD for the confirmation of desired phase and purity.  相似文献   

8.
In this research, zeolite-derived aluminosilicate phosphors were synthesized through the ion exchange route. Red light-emitting property of Eu3+-doped aluminosilicate phosphors were discussed from a view point of the Eu content, heat-treatment condition and the oxidation state of Eu ions. The crystalline phase of the host aluminosilicates could be successfully controlled as designed based on the published NaAlO2–SiO2 binary phase diagram. Orange-red emission peaks derived from the 5D07Fj (j=0, 1, 2, 3, 4) transition of Eu3+ were observed around 590–700 nm, and 4f65d→4f7 transition of Eu2+ was observed at around 400–500 nm. The relative intensity I(5D07F2) of the dominant emission peak at 612 nm increased consistently with the Eu content. The results of the XANES spectroscopy analysis revealed that Eu2+ ion in the 1400 °C as heat-treated host aluminosilicate were successfully converted to Eu3+ by the additional annealing at 1100 °C. The Eu contents and heat-treatment conditions were determined to exhibit the best performance as a red phosphor, which were 10 wt% and 1500 °C, respectively  相似文献   

9.
The Y0.95?xAlxVO4:5%Eu3+ (0≤x≤0.1) phosphors were successfully synthesized by solid state reaction at 900 °C for 6 h, and their luminescence properties were investigated under UV and VUV excitation. Monitoring at 619 nm, a strong broad absorption was enhanced by co-doping of Al3+ into the YVO4:Eu3+ lattices at 256 nm under UV excitation. The VUV excitation spectra also showed the enhanced excitation bands at about 156 and 200 nm. Under 254 or 147 nm excitation, it was found that Y0.95?xAlxVO4:Eu3+(0≤x≤0.1) phosphors showed strong red emission at about 619 nm corresponding to the electric dipole 5D0–7F2 transition of Eu3+. The improvement of luminescence intensity of YVO4:Eu3+ was also observed after partial substituting Y3+ by Al3+ and the optimal luminescence intensity appeared with incorporation of 2.5 mol% Al3+.  相似文献   

10.
An Eu2+-activated oxynitride LiSr(4?y)B3O(9?3x/2)Nx:yEu2+ red-emitting phosphor was synthesized by solid-state reactions. The synthesized phosphor crystallized in a cubic system with space group Ia–3d. The LiSr4B3O(9?3x/2)Nx:Eu2+ phosphors exhibited a broad red emission band with a peak at 610 nm and a full width at half maximum of 106 nm under 410 nm excitation, which is ascribed to the 4f65d1→4f7 transition of Eu2+. The optimal doped nitrogen concentration was observed to be x=0.75. The average decay times of two different emission centers were estimated to be 568 and 489 ns in the LiSr3.99B3O8.25N0.5:0.01Eu2+ phosphors, respectively. Concentration quenching of Eu2+ ions occurred at y=0.07, and the critical distance was determined as 17.86 Å. The non-radiative transitions via dipole–dipole interactions resulted in the concentration quenching of Eu2+-site emission centers in the LiSr4B3O9 host. These results indicate LiSr4B3O(9?3x/2)Nx:Eu2+ phosphor is promising for application in white near-UV LEDs.  相似文献   

11.
In this paper we report the combustion synthesis of rare earth (RE=Eu, Dy) doped Ba4Al2O7 phosphors. Prepared phosphors were characterized by X-ray powder diffraction (XRD), scanning electron microscope (SEM), Fourier transform infrared spectroscopy (FTIR), CIE color co-ordinates and their photoluminescence (PL) properties were also investigated. In case of Ba4Al2O7: Eu2+, the emission spectra show unique band centered at 495 nm, which corresponds to the 4f65d1→4f7 transition of Eu2+, and PL emission spectra of Dy3+ ion under 348 nm excitation give two bands centered at 478 nm (blue) and 575 nm (yellow), which originate from the transitions of 4F9/26H15/2 and 4F9/26H13/2 of Dy3+, respectively. The results indicate that the Eu2+ and Dy3+ activated Ba4Al2O7 phosphor could find application in solid state lighting.  相似文献   

12.
The red-emitting phosphor In2(MoO4)3:Eu3+ with cubic crystal structure was synthesized by a conventional solid-state reaction technique and its photoluminescence properties were investigated. The prepared phosphor can be efficiently excited by ultraviolet (395 nm) and blue (466 nm) light. The emission spectra of the phosphor manifest intensive red-emitting lines at 612 nm due to the electric dipole 5D07F2 transitions of Eu3+. The chromaticity coordinates of x=0.63, y=0.35 (λex=395 nm) and x=0.60, y=0.38 (λex=466 nm) are close to the standard of National Television Standard Committee values (NTSC) values. The concentration quenching of In2(MoO4)3:Eu3+ is 40 mol% and the concentration self-quenching mechanism under 466 nm excitation was the dd intereaction. As a result of the strong emission intensity and good excitation, the phosphor In2(MoO4)3:Eu3+ is regarded as a promising red-emitting conversion material for white LEDs.  相似文献   

13.
Dy3+-doped monoclinic NaYFPO4 phosphor has been synthesized by solid-state reaction technique. Its photoluminescence in the vacuum ultraviolet (VUV)-visible region was investigated. The most intensity broadband emission centered at about 171 nm was the host-related absorption. Another broadband at 153 nm could be related to the O2→Dy3+ charge transfer band (CTB) absorption. The excitation peaks located at 178 nm and 256 nm were the spin-allowed (SA) and spin-forbidden (SF) fd transitions of Dy3+, respectively. Some sharp lines in the range of 280–500 nm were due to the ff transitions of Dy3+ within its 4f9 configuration. Under the VUV–vis excitation, the Dy3+-doped NaYFPO4 phosphor showed the characteristic emissions of Dy3+ (4F9/26H15/2 transitions and 4F9/26H13/2 transitions) with a stronger blue emission peaking at about 485 nm. All the chromaticity coordinates of the sample were in the near cold-white region. It can be predicted that this phosphor can be applied in both mercury-free luminescence lamps and white LED.  相似文献   

14.
New red tungstates phosphors, Na5La1?xLnx(WO4)4 (Ln = Eu, Sm) and Na5Eu1?xSmx(WO4)4, were prepared by solid-state reaction technique. And their structure and photo-luminescent properties were investigated. The introduction of Sm3+ broadened the excitation band around 400 nm of the phosphors, and strengthened the red emission. And the possible energy transfer process from Sm3+ to Eu3+ is discussed. The single red LED was fabricated by combining InGaN chip with Na5Eu0.94Sm0.06(WO4)4 as red phosphor, intense red light can be observed by naked eyes. Then the phosphor Na5Eu0.94Sm0.06(WO4)4 may be a good candidate for red component of near-UV InGaN-based W-LEDs, because of efficient red-emitting with broadened absorption around 400 nm and appropriate CIE chromaticity coordinates (x = 0.65, y = 0.34).  相似文献   

15.
Two series of calcium gallate phosphors: Ca1?xEuxGa4O7 and Ca1?2xEuxNaxGa4O7 (x=0, 0.002, 0.01, 0.02, 0.03, 0.05) were synthesized by a modified Pechini method and their optical properties at 298 and 77 K were investigated. In undoped CaGa4O7 upon 255 nm excitation a bluish white emission (λmax=500 nm) followed by an afterglow of the same color lasting for 10–20 s was observed. Eu3+-doping quenched the host-related luminescence and the characteristic red emission of the dopant with maximum at 613 nm appeared. Its excitation spectrum consisted of a broad band assigned to ligand to metal, O2?→Eu3+, charge transfer absorption and narrow lines arising from intraconfigurational transitions within the 4f6 states of Eu3+ ion. The effects of Eu3+ concentration and Na+ co-doping on the luminescence properties and decay kinetics were studied. Low temperature emission spectra showed that Eu3+ ions are positioned in environments of different symmetries. Their relative populations changed with the activator content. Co-doping with Na+ ions led to a remarkable reduction of the number of Eu3+ sites as well as to noticeable improvement of the luminescence brightness though it did not affect the decay time of the emission. The quantum efficiencies of singly doped CaGa4O7:Eu3+ were very low (in the range of 1–3.7%). Na+ co-doping improved this parameter leading to the highest efficiency of 11% for CaGa4O7:3%Eu3+,3%Na+.  相似文献   

16.
Eu3+ doped Y2O3 nanophosphors have been synthesized using the simple colloidal precipitation method. Doping of Eu3+ ions in host yttria lattice has been achieved through slow re-crystallization process under wet-chemical conditions followed by annealing at high temperatures (300–1400 °C). The nanophosphors were characterized by using powder X-ray diffraction (XRD), thermogravimetric analysis (TGA), atomic force microscopy (AFM) and spectrofluorometer techniques. XRD analysis reveals formation of pure cubic phase of Y2O3 in samples annealed at 700 °C or above. Further, the XRD data was successfully used to retrieve the crystallite size and size distribution from powder samples using the FW((1/5)/(4/5))M method. Crystallite size (11–50 nm) extracted from XRD has been found to be consistent with AFM measurements. The PL emission spectra of nanophosphors show bright red emission at 612 nm due to hypersensitive electric dipole (ED) 5D07F2 transition of Eu3+ ions in Y2O3 lattice. Further, photoluminescence studies indicate that optimum value of the Eu3+ to get best luminescence properties is 12 at%. Surface conjugations of these nanophosphors with water soluble dextran biomolecules have also been performed. Surface conjugated rare earth nanophosphors have great potential for bio-applications.  相似文献   

17.
The optical properties of doping Eu2+-ions in a novel composite host, consisting of a spatially-coherent aggregate of crystallites of KBr(0.097):KI(0.903) and KBr(0.459):KCl(0.511):KI(0.030), are investigated. The absorption spectrum consists of two broad absorption bands peaking at 353 and 279 nm while the fluorescence spectrum has a single emission band peaking at 422 nm. These spectra, formed by the spectral contributions from the phases in the composite, are similar in overall shape to the spectra of the Eu2+-doped alkali halides used as mother salts, indicating that they are similar in electronic origin. However, in relation to these alkali halides, the phases in the Eu2+-doped composite have low 10Dq-splittings (5684 and 8034 cm?1), low 5d-level barycentre shifts (corresponding to decrements of about ?3351, ?2839, and ?1823 cm?1, respectively, for one of the phases in the composite, and ?2411, ?1899 and ?916 cm?1, respectively, for the other) and low Stokes shifts (4632 and 5496 cm?1). Such low values are discussed to be due to the effect of the mixed ionic character of the impurity environment on the local crystal field as well as to an impurity preference for host cation lattice sites where an iodide ion is nearby to lie at.  相似文献   

18.
This paper describes an investigation of the crystalline morphology and photoluminescent properties of YInGe2O7 powders doped with different Eu3+ concentrations using microwave assisted sintering and conventional sintering. X-ray powder diffraction analysis confirmed the formation of monoclinic YInGe2O7 structure as YInGe2O7:Eu3+ powders were sintered at 1200 °C in microwave furnace for 1 h, and the raw material phase of Y2O3 was observed when Eu3+ concentration was below 30 mol%. Scanning electron microscopy showed microwave assisted sintering results in smaller particle size and more uniform grain size distribution. In the photoluminescent (PL) studies, the concentration quenching effect was observed under the excitation at 393 nm, but not under the excitation at CTS band. The 5D07F2 transition (620 nm), exhibits a non-exponential decay behavior as YInGe2O7:Eu3+ powders were sintered by microwave with the Eu3+ concentration higher than 50 mol%.  相似文献   

19.
《Current Applied Physics》2010,10(2):596-600
The spectroscopic and host phase properties of SrAl2O4:Eu2+, Dy3+ phosphors with a series of different initiating combustion temperature, urea concentration as a fuel and critical pH of precursor solution are investigated. The SrAl2O4:Eu2+, Dy3+ nanoparticle pigments were obtained by exothermic combustion process within less than 5 min. The sample that ignited at initiating combustion temperature of 600 °C exhibits highest intensity emission peak at 517 nm in which the SrAl2O4 host phase has the maximum fraction of monoclinic SrAl2O4 phase. The excitation spectra consist of 240 and 254 nm broad peaks. The experimental results show that the optimum ratio of urea is 2.5 times higher than theoretical quantities for best emission condition of SrAl2O4:Eu2+, Dy3+ phosphor particles. The critical pH was obtained about 5.2. The crystallite size of these pigments is about 40 nm before thermal treatment and 62 nm after thermal treatment, respectively.  相似文献   

20.
Nd3+-doped TiO2–SiO2 composites were prepared by sol–gel method. Optical properties such as radiative life-time (τ), stimulated emission cross-section (σp) and branching ratio (β) were calculated using Judd–Ofelt theory. Violet to blue upconversion emissions at 380 nm (4D3/24I11/2), 399 nm (2P3/24I11/2), 420 nm (2D5/24I9/2) and 452 nm (2P3/24I13/2) were obtained under 578 nm xenon-lamp excitation. The choice of 578 nm is justified by the absorption spectra of the same samples, which shows a strong absorption peak at 578 nm. This 578 nm excitation pump produces upconversion in Nd3+ by a sequential two-photon absorption process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号