首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
The expected commute times for a strongly connected directed graph are related to an asymmetric Laplacian matrix as a direct extension to similar well known formulas for undirected graphs. We show the close relationships between the asymmetric Laplacian and the so-called Fundamental matrix. We give bounds for the commute times in terms of the stationary probabilities for a random walk over the graph together with the asymmetric Laplacian and show how this can be approximated by a symmetrized Laplacian derived from a related weighted undirected graph.  相似文献   

2.
3.
The second largest Laplacian eigenvalue of a graph is the second largest eigenvalue of the associated Laplacian matrix. In this paper, we study extremal graphs for the extremal values of the second largest Laplacian eigenvalue and the Laplacian separator of a connected graph, respectively. All simple connected graphs with second largest Laplacian eigenvalue at most 3 are characterized. It is also shown that graphs with second largest Laplacian eigenvalue at most 3 are determined by their Laplacian spectrum. Moreover, the graphs with maximum and the second maximum Laplacian separators among all connected graphs are determined.  相似文献   

4.
A graph is Laplacian integral if the spectrum of its Laplacian matrix consists entirely of integers. We consider the class of constructably Laplacian integral graphs - those graphs that be constructed from an empty graph by adding a sequence of edges in such a way that each time a new edge is added, the resulting graph is Laplacian integral. We characterize the constructably Laplacian integral graphs in terms of certain forbidden vertex-induced subgraphs, and consider the number of nonisomorphic Laplacian integral graphs that can be constructed by adding a suitable edge to a constructably Laplacian integral graph. We also discuss the eigenvalues of constructably Laplacian integral graphs, and identify families of isospectral nonisomorphic graphs within the class.  相似文献   

5.
Signless Laplacians of finite graphs   总被引:4,自引:0,他引:4  
We survey properties of spectra of signless Laplacians of graphs and discuss possibilities for developing a spectral theory of graphs based on this matrix. For regular graphs the whole existing theory of spectra of the adjacency matrix and of the Laplacian matrix transfers directly to the signless Laplacian, and so we consider arbitrary graphs with special emphasis on the non-regular case. The results which we survey (old and new) are of two types: (a) results obtained by applying to the signless Laplacian the same reasoning as for corresponding results concerning the adjacency matrix, (b) results obtained indirectly via line graphs. Among other things, we present eigenvalue bounds for several graph invariants, an interpretation of the coefficients of the characteristic polynomial, a theorem on powers of the signless Laplacian and some remarks on star complements.  相似文献   

6.
Let G be a mixed graph and let L(G) be the Laplacian matrix of the graph G. The first eigenvalue and the first eigenvectors of G are respectively referred to the least nonzero eigenvalue and the corresponding eigenvectors of L(G). In this paper we focus on the properties of the first eigenvalue and the first eigenvectors of a nonsingular unicyclic mixed graph (abbreviated to a NUM graph). We introduce the notion of characteristic set associated with the first eigenvectors, and then obtain some results on the sign structure of the first eigenvectors. By these results we determine the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order and fixed girth, and the unique graph which minimizes the first eigenvalue over all NUM graphs of fixed order.  相似文献   

7.
The Laplacian spread of a graph is defined to be the difference between the largest eigenvalue and the second smallest eigenvalue of the Laplacian matrix of the graph. In our recent work, we have determined the graphs with maximal Laplacian spreads among all trees of fixed order and among all unicyclic graphs of fixed order, respectively. In this paper, we continue the work on Laplacian spread of graphs, and prove that there exist exactly two bicyclic graphs with maximal Laplacian spread among all bicyclic graphs of fixed order, which are obtained from a star by adding two incident edges and by adding two nonincident edges between the pendant vertices of the star, respectively.  相似文献   

8.
A graph is said to be determined by the adjacency and Laplacian spectrum (or to be a DS graph, for short) if there is no other non-isomorphic graph with the same adjacency and Laplacian spectrum, respectively. It is known that connected graphs of index less than 2 are determined by their adjacency spectrum. In this paper, we focus on the problem of characterization of DS graphs of index less than 2. First, we give various infinite families of cospectral graphs with respect to the adjacency matrix. Subsequently, the results will be used to characterize all DS graphs (with respect to the adjacency matrix) of index less than 2 with no path as a component. Moreover, we show that most of these graphs are DS with respect to the Laplacian matrix.  相似文献   

9.
A 2-edge-covering between G and H is an onto homomorphism from the vertices of G to the vertices of H so that each edge is covered twice and edges in H can be lifted back to edges in G. In this note we show how to compute the spectrum of G by computing the spectrum of two smaller graphs, namely a (modified) form of the covered graph H and another graph which we term the anti-cover. This is done for both the adjacency matrix and the normalized Laplacian. We also give an example of two anti-cover graphs which have the same normalized Laplacian, and state a generalization for directed graphs.  相似文献   

10.
A mixed complete graph is obtained from a directed cycle of length at least three by adding all the possible arcs between any non-adjacent vertices of the underlying cycle. A mixed block graph is a strongly connected directed graph whose blocks are mixed complete graphs. In this paper, we give the inverse of the distance matrix of the mixed block graph.  相似文献   

11.
The Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph are the characteristic polynomials of its Laplacian matrix, signless Laplacian matrix and normalized Laplacian matrix, respectively. In this paper, we mainly derive six reduction procedures on the Laplacian, signless Laplacian and normalized Laplacian characteristic polynomials of a graph which can be used to construct larger Laplacian, signless Laplacian and normalized Laplacian cospectral graphs, respectively.  相似文献   

12.
Some old results about spectra of partitioned matrices due to Goddard and Schneider or Haynsworth are re-proved. A new result is given for the spectrum of a block-stochastic matrix with the property that each off-diagonal block has equal entries and each diagonal block has equal diagonal entries and equal off-diagonal entries. The result is applied to the study of the spectra of the usual graph matrices by partitioning the vertex set of the graph according to the neighborhood equivalence relation. The concept of a reduced graph matrix is introduced. The question of when n-2 is the second largest signless Laplacian eigenvalue of a connected graph of order n is treated. A recent conjecture posed by Tam, Fan and Zhou on graphs that maximize the signless Laplacian spectral radius over all (not necessarily connected) graphs with given numbers of vertices and edges is refuted. The Laplacian spectrum of a (degree) maximal graph is reconsidered.  相似文献   

13.
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we provide structural and behavioral details of graphs with maximum Laplacian spectral radius among all bipartite connected graphs of given order and size. Using these results, we provide a unified approach to determine the graphs with maximum Laplacian spectral radii among all trees, and all bipartite unicyclic, bicyclic, tricyclic and quasi-tree graphs, respectively.  相似文献   

14.
The Laplacian spectrum of a graph is the eigenvalues of the associated Laplacian matrix. The quotient between the largest and second smallest Laplacian eigenvalues of a connected graph, is called the Laplacian spectral ratio. Some bounds on the Laplacian spectral ratio are considered. We improve a relation on the Laplacian spectral ratio of regular graphs. Especially, the first two smallest Laplacian spectral ratios of graphs with given order are determined. And some operations on Laplacian spectral ratio are presented.  相似文献   

15.
The Laplacian spectral radius of a graph is the largest eigenvalue of the associated Laplacian matrix. In this paper, we improve Shi’s upper bound for the Laplacian spectral radius of irregular graphs and present some new bounds for the Laplacian spectral radius of some classes of graphs.  相似文献   

16.
在他人研究完全多部图的邻接谱的基础上,对整完全多部图的Seidel多项式进行研究分析,以期得到完全六部图G是S-整图的充要条件.从讨论完全六部图的Seidel多项式入手,应用矩阵行初等变换的方法给出完全六部图G是S-整图的充要条件.  相似文献   

17.
The Laplacian spread of a graph is defined as the difference between the largest and second smallest eigenvalues of the Laplacian matrix of the graph. In this paper, bounds are obtained for the Laplacian spread of graphs. By the Laplacian spread, several upper bounds of the Nordhaus-Gaddum type of Laplacian eigenvalues are improved. Some operations on Laplacian spread are presented. Connected c-cyclic graphs with n vertices and Laplacian spread n − 1 are discussed.  相似文献   

18.
We consider the problem of finding universal bounds of “isoperimetric” or “isodiametric” type on the spectral gap of the Laplacian on a metric graph with natural boundary conditions at the vertices, in terms of various analytical and combinatorial properties of the graph: its total length, diameter, number of vertices and number of edges. We investigate which combinations of parameters are necessary to obtain non-trivial upper and lower bounds and obtain a number of sharp estimates in terms of these parameters. We also show that, in contrast to the Laplacian matrix on a combinatorial graph, no bound depending only on the diameter is possible. As a special case of our results on metric graphs, we deduce estimates for the normalised Laplacian matrix on combinatorial graphs which, surprisingly, are sometimes sharper than the ones obtained by purely combinatorial methods in the graph theoretical literature.  相似文献   

19.
There is a deep and interesting connection between the topological properties of a graph and the behaviour of the dynamical system defined on it. We analyse various kind of graphs, with different contrasting connectivity or degree characteristics, using the signless Laplacian matrix. We expose the theoretical results about the eigenvalue of the matrix and how they are related to the dynamical system. Then, we perform numerical computations on real-like graphs and observe the resulting system. Comparing the theoretical and numerical results, we found a perfect consistency. Furthermore, we define a metric which takes into account the “rigidity” of the graph and enables us to relate all together the topological properties of the graph, the signless Laplacian matrix and the dynamical system.  相似文献   

20.
对于一个简单图G, 方阵Q(G)=D(G)+A(G)称为G的无符号拉普拉斯矩阵,其中D(G)和A(G)分别为G的度对角矩阵和邻接矩阵. 一个图是Q整图是指该图的无符号拉普拉斯矩阵的特征值全部为整数.首先通过Stanic 得到的六个顶点数目较小的Q整图,构造出了六类具有无穷多个的非正则的Q整图. 进而,通过图的笛卡尔积运算得到了很多的Q整图类. 最后, 得到了一些正则的Q整图.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号