首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
The magnetic properties of ten types of ferritic and martensitic stainless steels have been measured at room temperature and at 77 K. The steel samples studied were in the annealed state as received from the manufacturer. Our room temperature measurements indicate significantly harder magnetic properties than those quoted in the ASM International Handbook, which studied fully annealed stainless steel samples. Despite having harder magnetic properties than fully annealed steels some of the as-received steels still display soft magnetic properties adequate for magnetic applications. The carbon content of the steels was found to affect the permeability and coercive force, with lower-carbon steels displaying significantly higher permeability and lower coercive force. The decrease in coercive force with reduced carbon content is attributed to fewer carbide inclusions which inhibit domain wall motion. Cooling to 77 K resulted in harder magnetic properties. Averaged over the ten steels tested the maximum permeability decreased by 8%, the coercive force increased by 14%, and the residual and saturation flux densities increased by 4% and 3%, respectively. The change in coercive force when cooled is comparable to the theoretical prediction for iron, based on a model of domain wall motion inhibited by inclusions. The modest changes of the magnetic properties indicate that the stainless steels can still be used in magnetic applications at very low temperatures.  相似文献   

2.
The transformed microstructures of the high-purity Fe-0.12C alloy and Fe-0.36C alloy heat treated without and with a 12 T magnetic field have been investigated to explore the carbon-content dependent field effect on austenitic decomposition in steels. Results show that, the field-induced transformed morphology characteristics in different alloys differ from each other. In the Fe-0.12C alloy, the pearlite colonies are elongated along the field direction, and shaped by the chained and elongated proeutectoid ferrite grains in the field direction. However, in the Fe-0.36C alloy, the field mainly reduces the amount of Widmänstatten ferrite and elongates the formed proeutectoid ferrite grains in the field direction. No clear field direction alignment is obtained. The magnetic field also demonstrates carbon-content dependent effect on the texture of the formed ferrite. It clearly enhances the 〈001〉 fiber of the ferrite in the transverse field direction in the Fe-0.36C alloy. This field effect is related to the crystal lattice distortion induced by carbon solution and this impact becomes stronger with the increase of the carbon content. For the Fe-0.12C alloy, this field effect is greatly reduced due to the reduced carbon oversaturation in ferrite and elevated formation temperature. The orientation relationships (ORs) between the pearlitic ferrite and the pearlitic cementite in both alloys are less affected by the magnetic field. No obvious changes in the either type of the appearing ORs and their number of occurrences are detected.  相似文献   

3.
The formation of nanocrystal -martensite structures (NCS) in the surface layers of carbon and alloy steels under conditions of sliding friction and abrasion is investigated by electron microscopic, x-ray, and metallographic methods. The influence of the dynamic strain aging of martensite and strain dissolution of the carbide phase on the strength (microhardness and shear resistance) and tribological properties (wear resistance and friction coefficient) of nanocrystal surface layers of steels with martensitic base is demonstrated. The role of nanocrystal martensite in adhesive, abrasive, and fatigue wear resistance of steels is examined. The negative influence of the oxidizing air environment on the effective strength and wear resistance of friction NCS is demonstrated. The increased resistance of friction NCS of high-carbon steel to softening after tempering and friction heating is established.Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Fizika, No. 8, pp. 65–80, August, 2004.  相似文献   

4.
This article presents the results of comparative studies of mechanical properties and microstructure of nuclear fuel tubes and semifinished stainless steel items fabricated by consolidation of rapidly quenched powders and by conventional technology after high-temperature exposures at 600 and 700°C. Tensile tests of nuclear fuel tube ring specimens of stainless austenitic steel of grade AISI 316 and ferritic–martensitic steel are performed at room temperature. The microstructure and distribution of carbon and boron are analyzed by metallography and autoradiography in nuclear fuel tubes and semifinished items. Rapidly quenched powders of the considered steels are obtained by the plasma rotating electrode process. Positive influence of consolidation of rapidly quenched powders on mechanical properties after high-temperature aging is confirmed. The correlation between homogeneous distribution of carbon and boron and mechanical properties of the considered steel is determined. The effects of thermal aging and degradation of the considered steels are determined at 600°C and 700°C, respectively.  相似文献   

5.
The evolution of the magnetic phase upon aging at 300–520 °C in a heavily cold-drawn AISI 316L austenitic stainless steel fiber was studied using thermomagnetic analysis (TMA) and magnetic force microscopy with a heating stage. An increasing trend of magnetization from 50 °C to around 470 °C in the heating curves of TMA in austenitic stainless steels after a cold-drawing process was observed. No significant Ms temperature signal in the TMA curve at cooling indicated an increase in magnetization upon cooling period without significant phase transformation. A series of in situ magnetic force microscopy observations reveal a growth of the magnetic domain structure after aging at 300 °C for 2.5 h. Results show that the ferromagnetic increase during aging at lower annealing temperature resulted from the growth of martensite.  相似文献   

6.
In this research, three Bulgarian steels were employed, one carbon (08KP) and other two low alloyed (KBC) and (KORAT). These three steels were exposed on a test site affected with industrial pollution in the Cuban climate, for a period of one, two and three years. The phase composition obtained by means of XRD and Mössbauer spectroscopy is mainly a mixture of Goethite (α-FeOOH) and Lepidocrocite (γ-FEOOH) in the three steels. The mean width of the Goethite reflexions, as determined in the diffractograms, is increased in the case of the low alloyed steels, while in Mössbauer spectra two types of magnetic arrangement for Goethite appear, one antiferromagnetic (sextet) and the other superparamagnetic (doublet). This behaviour is due to the effect of the small particle size and the presence of alloying elements in the structure. In this paper, the values of the areas of both effects are discussed from the greater formation of superparamagnetic Goethite in the KORAT steel which exibits the lowest corrosion rate.  相似文献   

7.
The dynamic and static deformation aging of two austenitic steels Ni36Cr11 and of commercial nickel Nil has been investigated. The activation energy of the deformation-aging process, which leads to an increase in the mechanical properties of the materials, has been determined. The value obtained for the activation energy leads to the conclusion that in the alloys investigated the movement of divacancy-carbon atom complexes to the dislocations takes place in the early stages of deformation aging, and as a result of this Cottrell atmospheres are formed from interstitial carbon atoms. Subsequently these atmospheres become nucleation centers for the precipitation of carbide phases. The carbides effectively pin the dislocations, and this leads to the appearance of steps on the stress-strain curves, to a rise in the hardening coefficient, and to an increase in the resistance to deformation on raising the test temperature. It is concluded that the softening which takes place at high temperatures is due to an increase in the solubility of carbon and to the agglomeration of carbides.  相似文献   

8.
The effect of gradients in hardness, structure and composition in the surface layers on magnetic Barkhausen noise (MBN) was investigated in two widely used low alloy steels. One material was case hardened by induction hardening. The other was case carburised. Similar hardness profiles were produced by the two treatments. It was found that the variation in structure and hardness through the case in the induction-hardened steel had a minor effect on the MBN profile. In contrast, the inhomogeneity in the case-carburised material showed up clearly. This took the form of a broadened or two-peak MBN profile. When the surface layer containing the case was removed by etching, the broadened profile was replaced by a profile with a single peak. It is concluded that the shape and position of the MBN profile is significantly affected when a gradient in microstructure is induced by a gradient in carbon content. On the other hand, a gradient in microstructure induced by heat treatment with a constant carbon level has much less affect on the MBN profile for the induction-hardened steel.  相似文献   

9.
Neutron irradiation is known to cause embrittlement of iron-based materials; in the nuclear industry, this effect can be detrimental for reactor pressure vessel steels. In this paper, we investigate the variations of the magnetic hysteretic behavior due to neutron irradiation, for four materials, i.e. nominally pure Fe, Fe-0.1 wt% Cu and Fe-0.3 wt%Cu model alloys, and a reactor pressure vessel steel, JRQ A533-B. Two parameters related to the magnetization loop shape, i.e. maximum relative differential permeability and peak intensity of local interaction field distribution, are measured as a function of neutron fluence. For all materials both parameters decrease with increasing fluence, due to the irradiation-induced formation of nano-size defects. This decreasing trend in magnetic parameters during embrittlement is noticeable regardless the origin of the embrittlement, which can be only Cu-precipitation (thermal aging of Fe–Cu), only matrix damage (irradiation of pure Fe), or both mechanisms (irradiation of Fe–Cu or steel). The magnetic parameters relatively change up to 40%, which indicates the potential of magnetic characterization to assess irradiation-induced material hardening and embrittlement.  相似文献   

10.
The influence of a high magnetic field on the carbide precipitation during the tempering of an Fe-2.8C-3.0Mo(wt%) steel was investigated. As-quenched steels were tempered at 200 °C for various times with and without the presence of 12-T magnetic field. The applied field effectively promoted the precipitation of the relatively high-temperature monoclinic χ-Fe5C2 carbide, compared to the usual ε-Fe2C and η-Fe2C carbides precipitated without magnetic field. It is believed that the effect of applying a magnetic field is due to the reduction in the Gibbs free energy of the relatively higher magnetization phase. The denser distributions of the metastable carbides are attributed to the increased nucleation rate due to additional transformation force. The dispersed precipitation strengthening compensated for the decrease of hardness due to the loss of supersaturation of carbon atoms in the matrix.  相似文献   

11.
The effects of manganese and sulfur contents and slab reheating temperatures (SRTs) on the magnetic properties of non-oriented semi-processed electrical steel sheets were investigated. The core loss W15/50 of the steels increases with an increase of sulfur content in each steel with different manganese contents, while, the magnetic induction B50 hardly changed with an increase of the sulfur content at any manganese level. The SRTs affect the core loss in steels without hot band annealing, and in steels processed at an SRT of 1273 K showed the lowest core loss. Steels with higher sulfur content processed at an SRT of 1523 K showed deterioration of the core loss caused by the retardation of the grain growth at the recrystallization annealing by the fine MnS (ca.0.1 μm in diameter).  相似文献   

12.
Decarburization is a necessary part of the processing of electrical steels if their carbon content is above a certain level. The process is usually carried out in a wet hydrogen–nitrogen atmosphere. Having a high dew point has a negative influence on the power loss, though. This is due to oxidation of the steel, which hinders domain wall motion near the surface. In this study, an increase of the power loss was only observed at a fairly high dew point (>20 °C). It was also only at these high dew points where a subsurface oxide layer was observed. The surfaces of samples with and without this layer were etched in steps. The magnetic properties of the etched samples corresponded well with the expected behavior based on GDOES profiles of the samples.  相似文献   

13.
Data are given on an experimental study of the effect of grain size and carbon content in steels on the discontinuous character of their stress-strain diagrams. The results of the tests are interpreted in terms of dislocation concepts.  相似文献   

14.
Most fermented foods need a natural aging process to enrich desired flavours. This process is normally the bottleneck for cost-effective production. Therefore, it is desirable to accelerate the process and obtain products with the same flavour profile. Here, we used physical interventions (ultrasonic field, alternating magnetic field, or combination of both) to assist the aging process with naturally brewed vinegar as a case example. Flavour profiles of different physical-assisted aging process were compared with that of the naturally aged vinegar by using gas-chromatography mass-spectrometry (GC–MS) and electronic nose. Principal component analysis (PCA) and Pearson correlation analyses show that ultrasonic and alternating magnetic fields treatment could accelerate the aging process of vinegar. The highest accelerating aging effect was combination of ultrasonic and magnetic field followed by individual ultrasonic or magnetic field and natural process (combination of ultrasonic and magnetic field > ultrasonic or magnetic field individual > natural process). These results suggest that physical field intervention could potentially be used for acceleration of aging of fermented products without affecting flavour quality.  相似文献   

15.
The effect of structural changes on the physicomechanical properties of high-strength maraging steels based on iron-nickel-titanium and iron-nickel-aluminum systems after different types of treatment is investigated. It is shown that economically alloyed cobalt-free maraging steels acquire a combination of high mechanical and magnetic properties and resistance to low-cycle fatigue.  相似文献   

16.
Spin-selective interaction of magnetic ortho-H2O isomers with yeast cells has been experimentally established. In particular, their growth in depleted (dietary) or normal nutrient aqueous solutions, enriched with 10 to 15% with ortho-H2O spin isomers, is accompanied by an increase in the amount of carbon dioxide produced by the cells and an increase in their biomass. The mechanism of this effect is discussed. The processes observed are interpreted in terms of retardation of aging and increase in the cell division and reproduction rates.  相似文献   

17.
An ultra-low carbon steel (30 ppm after decarburization) containing Al and Si was aged for distinct soaking times at 210 °C. The core loss increased continuously until around 24 h. After that, only slight changes were verified. It was found that only the hysteresis loss component changed during the aging treatment. By internal friction test and transmission electron microscopy it was seen that carbon precipitation caused the magnetic aging. By scanning electron microscopy it could be concluded that the increase of aging index was attributed to the high number of carbides larger than 0.1 μm.  相似文献   

18.
X-ray photoelectron spectroscopy (XPS) has been used to investigate the changes in surface composition of three steels as they have undergone heating. The steels were mild steel, and two austenitic stainless steels, commonly designated 304 and 316 stainless steels. XPS measurements were made on the untreated samples, and then following heating for 30 min in vacuo and in a 1 × 10−6 Torr partial pressure of air, at temperatures between 100 °C and 600 °C.Mild steel behaves differently to the two stainless steels under the heating conditions. In mild steel the iron content of the surface increased, with oxygen and carbon decreasing, as a function of increasing temperature. The chemical state of the iron also changed from oxide at low temperatures, to metallic at temperatures above 450 °C.In both stainless steels the amount of iron present in the surface decreased with increasing temperature. The decrease in iron at the surface was accompanied by an increase in the amount of chromium at the steel surface. At temperatures above 450 °C the iron in both 304 and 316 stainless steels showed significant contributions from metallic iron, whilst the chromium present was in an oxide state. In 316 stainless steel heated to 600 °C there was some metallic chromium present in the surface layer.The surfaces heated in air showed the least variation in composition, with the major change being the loss of carbon from the surfaces following heating above 300 °C. There was also a minor increase in the concentration of chromium present on both the stainless steels heated under these conditions. There was also little change in the oxidation state of the iron and chromium present on the surface of these steels. There was some evidence of the thickening of the surface oxides as seen by the loss of the lower binding energy signal in the iron or chromium core level scans.The surfaces heated in vacuum showed a similar trend in the concentration of carbon on the surfaces, however the overall concentration of oxygen decreased throughout the heating of these steels. There were also significant changes in the oxidation state of the iron and chromium on these surfaces with significant amounts or iron and chromium present in the metallic form following heating up to 600 °C.It appears that the carbon contamination on the surfaces plays an important role in the fate of the surface oxide layer for all of the steels heated in a vacuum environment.  相似文献   

19.
Effect of alloying additional elements (Al, Si, Ti, V, Ni, Cu, Zr, Nb and Mo) with Fe-22/30 wt% Cr-12 wt% Co permanent magnet alloys manufactured by magnetic aging has been systematically studied with magnetic measurements and transmission electron microscopy (TEM), on a laboratory scale. It is found that the alloying shifts the optimum Cr content to a lower lever. Ti and Si show the greatest enhancement on magnetic properties yet narrow the optimum magnetic aging temperature range. Mo, Nb and Cu, when used together with Si, promote magnetic properties and widen the optimum magnetic aging temperature range. Ni and Zr are simply magnetic diluents. V is good for the magnetic properties only at a large amount of addition. The origin of alloying effects explored by TEM microscopy is attributed to the degree of particle entanglement as well as elongation.  相似文献   

20.
何怡贞  张功杼 《物理学报》1955,11(6):469-478
我们用爱氏光源(低电流交流电弧)作高速钢的光谱分析时,发现样品的组织结构对于分析结果有影响。为了对这个现象得到进一步的了解,我们选择了10种含碳量不同的铬钢进行热处理试验和光谱分析。一系列实验的结果指出,用小电流(5安)电弧光源时,铬的光谱分析结果由于试样是退火组织或淬火组织而有差别,这个差别又随着钢中含碳量的增加而增加。我们认为,这种影响是由于碳在试样中存在状态的不同所引起的。在低功率光源中,这种不同使合金元素被蒸发和被激发的情况有所差别,因而就影响了光谱分析的结果。这种影响由于合金元素之不同而有程度上的不同,对铬的影响很显著,对锰和矽的影响则很小。此外,所选择的分析线对是弧线还是火花线,对于这种组织结构的效应也有显著的影响。曾经进行了一些消除组织结构影响的实验。发现在应用低功率光源时,增加预燃时间并不能消除这个效应。用火花光源或大电流(8安)电弧光源时,这种影响大为减小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号