首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a water-soluble polymer, polyethylenimine (PEI) was used for the simultaneous separation and preconcentration of trace Cu and Mn prior to their determination by flame atomic absorption spectrometry. For this purpose, the sample and the PEI solution were mixed and the metal-bound polymer was precipitated by adding acetone. The precipitate was separated and dissolved in a minimum amounts of water and aspirated into a flame AAS. By increasing the ratio of the volumes of sample to water used in dissolving the precipitate, the analyte elements were concentrated as needed. The sorption is quantitative in the pH ≥6. Detection limits were 5.2 μg/L for Cu and 5.4 μg/L for Mn. This method is simple, fast and precise.  相似文献   

2.
The use of a water-soluble polymer, poly(vinyl pyrrolidinone) (PVP), for the preconcentration and separation of nickel and cobalt prior to their determination by graphite furnace atomic absorption spectrometry is described. For this purpose, the sample and the water-soluble polymer solutions were mixed, and the metal-bound polymer was precipitated by pouring the mixture into acetone. The precipitate was separated by decantation and dissolved with distilled-deionized water. The analyte elements were determined by graphite furnace atomic absorption spectrometry. The validity of the method was tested with spiked sea water and mineral water samples. The analytes added to the samples were quantitatively recovered within the range of 95% confidence limits. The proposed technique is fast, simple, precise and inexpensive. Its low blank values and high precision are other important advantages.  相似文献   

3.
IntroductionGraphite furnace atomic absorption spectrome-try (GFAAS) is one of the most sensitive tech-niques for the determination of various elementswith detection limits in the range ofμg/ L to ng/ L.Despite the impressive detection power of the tech-nique,GFAAS can tbe routinely used to make di-rect analysis of some real samples with complexcomposition[1] . This is due to the matrix interfer-ence and/ or insufficient detection power. Conse-quently,separation and preconcentration proc…  相似文献   

4.
目的研究藏药材铁棒锤的微量元素含量。方法使用电感耦合等离子体质谱仪(ICPMS)测定藏药材铁棒锤药材中As、Hg、Pb、Cd含量,使用原子吸收光谱仪(火焰法、石墨炉法)测定药材中Zn、Mn、Cr、Fe、Ca、K、Cu元素的含量并进行分析。结果铁棒锤中有害元素As、Hg、Pb、Cd含量较低,Cu、Fe等有益元素含量较高。结论藏药材铁棒锤有丰富的微量元素,具有较高的开发利用价值。  相似文献   

5.
The determination of bismuth and cadmium by graphite furnace atomic absorption spectrometry (GFAAS) after solid-phase extraction (SPE) on Chromosorb-107 filled in a syringe was described. To retain the analytes, the sample solution treated with and without ammonium pyrolidine dithiocarbamate (APDC) was drawn into the syringe filled with Chromosorb-107 and discharged back manually. Bismuth and cadmium were quantitatively sorbed at pH ≥ 6 irrespective of whether the analyte was complexed with APDC prior to passing through the Chromosorb-107. Analyte elements sorbed on the resin were quantitatively eluted with 3.0 M of HNO3 again drawing and discharging the eluent into the syringe and ejected it back. Optimum flow rates of sample or eluent for sorption and elution processes were 20 ml min−1 for drawing and 20 ml min−1 for discharging in all cases. Bismuth and cadmium were analyzed by graphite furnace atomic absorption spectrometry. The elements could be concentrated by drawing and discharging several portions of sample successively but eluting only one time. The validity of the proposed method was checked with standard reference materials (NIST SRM 1515 Apple-Leaves, CWW-TM-E Waste Water and CRM-SW Sea Water). The analyte elements were quantitatively (>95%) recovered from different matrices irrespective of treated samples with APDC. Detection limits (δ) were 0.8 and 1.2 μg l−1 for Bi and Cd, respectively. The method can be characterized with fastness, simplicity, quantitative recovery and high reproducibility.  相似文献   

6.
Bismuth and Sb were evaluated as internal standards (IS) to minimize matrix effects on the direct and simultaneous determination of As, Cu, and Pb in cachaça by graphite furnace atomic absorption spectrometry using W-coated platform plus Pd-Mg(NO3)2 as modifier. For 20 μL injected sample, calibration within the 0.5-10 μg L−1 As, 100-1000 μg L−1 Cu and 0.5-30 μg L−1 Pb intervals were established using the ratios As absorbance to Sb absorbance, Cu absorbance to Bi absorbance and Pb absorbance to Bi absorbance versus analytes concentration, respectively. Typical linear correlations of 0.998, 0.999 and 0.999 were, respectively, obtained. The proposed method was applied for direct determination of As, Cu and Pb in 10 commercial cachaça samples and results were in agreement with those obtained by inductively coupled plasma mass spectrometry at 95% confidence level. The found characteristic masses were 30 pg As, 274 pg Cu and 39 pg Pb. The useful lifetime of the graphite tube was around 760 firings. Recoveries of As, Cu and Pb added to cachaça samples varied, respectively, from 98% to 109%, 97% to 108% and 98% to 104% with internal standards and from 48% to 54%, 53% to 92% and 62% to 97% without internal standards. The limits of detection were 0.13 μg L−1 As, 22 μg L−1 Cu and 0.05 μg L−1 Pb. The relative standard deviations (n = 12) for a spiked sample containing 20 μg L−1 As, Pb and 500 μg L−1 Cu were 1.6%, 1.0%, and 1.8% with IS and 4.3%, 5.2%, and 5.5% without IS.  相似文献   

7.
The principal thermodynamic advantages of using microemulsions over standard emulsions for flow metal analysis are the greatly increased analyte stability and emulsive homogeneity that improve both the ease of sample preparation, and the analytical result. In this study a piston propelled flow-batch analyzer (PFBA) for the determination of Cu, Cr and Pb in gasoline and naphtha by graphite furnace atomic absorption spectrometry (GF AAS) was explored. Investigative phase modeling for low dilution was conducted both for gasoline and naphtha microemulsions. Rheological considerations were also explored including a mathematical flow derivation to fine tune the system's operational parameters, and the GF AAS coupling. Both manual and automated procedures for microemulsion preparation were compared. The results of the paired t test at a 95% confidence level showed no significant differences between them. Further recovery test results confirmed a negligible matrix effect of the sample on the analyte absorption signals and an efficient stabilization of the samples (with metals) submitted to microemulsion treatment. The accuracy of the developed procedure was attested by good recovery percentages in the ranges of 100.0 ± 3.5% for Pb in the naphtha samples, and 100.2 ± 3.4% and 100.7 ± 4.6% for Cu and Cr, respectively in gasoline samples.  相似文献   

8.
A chelate resin immobilizing carboxymethylated pentaethylenehexamine (CM-PEHA resin) was prepared, and the potential for the separation and preconcentration of trace elements in water samples was evaluated through the adsorption/elution test for 62 elements. The CM-PEHA resin could quantitatively recover various elements, including Ag, Cd, Co, Cu, Fe, Ni, Pb, Ti, U, and Zn, and rare earth elements over a wide pH range, and also Mn at pH above 5 and V and Mo at pH below 7. This resin could also effectively remove major elements, such as alkali and alkaline earth elements, under acidic and neutral conditions. Solid phase extraction using the CM-PEHA resin was applicable to the determination of 10 trace elements, Cd, Co, Cu, Fe, Mn, Mo, Ni, Pb, V, and Zn, in certified reference materials (EnviroMAT EU-L-1 wastewater and ES-L-1 ground water) and treated wastewater and all elements except for Mn in surface seawater using inductively coupled plasma atomic emission spectrometry. The detection limits, defined as 3 times the standard deviation for the procedural blank using 500 mL of purified water (50-fold preconcentration, n = 8), ranged from 0.003 μg L−1 (Mn) to 0.28 μg L−1 (Zn) as the concentration in 500 mL of solution.  相似文献   

9.
A simple and powerful microextraction technique was used for determination of selenium in water samples using dispersive liquid-liquid microextraction (DLLME) followed by graphite furnace atomic absorption spectrometry (GF AAS). DLLME and simultaneous complex formation was performed with rapid injection of a mixture containing ethanol (disperser solvent), carbon tetrachloride (extraction solvent) and ammonium pyrrolidine dithiocarbamate (APDC, chelating agent) into water sample spiked with selenium. After centrifuging, fine droplets of carbon tetrachloride, which were dispersed among the solution and extracted Se-APDC complex, sediment at the bottom of the conical test tube. The concentration of enriched analyte in the sedimented phase was determined by iridium-modified pyrolitic tube graphite furnace atomic absorption spectrometry. The concentration of selenate was obtained as the difference between the concentration of selenite after and before pre-reduction of selenate to selenite. Some effective parameters on extraction and complex formation, such as extraction and disperser solvent type and their volume, extraction time, salt effect, pH and concentration of chelating agent were optimized. Under the optimum conditions, the enrichment factor of 70 was obtained from only 5.00 mL of water sample. The calibration graph was linear in the range of 0.1-3 μg L− 1 with detection limit of 0.05 μg L− 1. The relative standard deviation (RSDs) for ten replicate measurements of 2.00 μg L− 1 of selenium was 4.5%. The relative recoveries of selenium in tap, river and sea water samples at spiking level of 2.00 μg L− 1 were 106, 96 and 98%, respectively.  相似文献   

10.
In this work, thermospray flame furnace atomic absorption spectrometry (TS-FF-AAS) was employed for Cu, Mn, Pb, and Zn determination in beer without any sample digestion. The system was optimized and calibration was based on the analyte addition technique. A sample volume of 300 μl was introduced into the hot Ni tube at a flow-rate of 0.4 ml min−1 using 0.14 mol l−1 nitric acid solution or air as carrier. Different Brazilian beers were directly analyzed after ultrasonic degasification. Results were compared with those obtained by graphite furnace atomic absorption spectrometry (GFAAS). The detection limits obtained for Cu, Mn, Pb, and Zn in aqueous solution were 2.2, 18, 1.6, and 0.9 μg l−1, respectively. The relative standard deviations varied from 2.7% to 7.3% (n=8) for solutions containing the analytes in the 25–50 μg l−1 range. The concentration ranges obtained for analytes in beer samples were: Cu: 38.0–155 μg l−1; Mn: 110–348 μg l−1, Pb: 13.0–32.9 μg l−1, and Zn: 52.7–226 μg l−1. Results obtained by TS-FF-AAS and GFAAS were in agreement at a 95% confidence level. The proposed method is fast and simple, since sample digestion is not required and sensitivity can be improved without using expensive devices. The TS-FF-AAS presented suitable sensitivity for determination of Cu, Mn, Pb, and Zn in the quality control of a brewery.  相似文献   

11.
The analytical utility of a tungsten (W)-coil atomization-laser-induced fluorescence (LIF) approach has been evaluated for trace level measurements of elemental chromium (Cr), arsenic (As), selenium (Se), antimony (Sb), lead (Pb), tin (Sn), copper (Cu), thallium (Tl), indium (In), cadmium (Cd), zinc (Zn) and mercury (Hg). Measurements of As, Cr, In, Se, Sb, Pb, Tl, and Sn were performed by laser-induced fluorescence using a single dye laser operating near 460 nm whose output was converted by frequency doubling and stimulated Raman scattering to wavelengths ranging from 196 to 286 nm for atomic excitation. Absolute limits of detection (LODs) of 1, 0.3, 0.3, 0.2, 1, 6, 1, 0.2 and 0.8 pg and concentration LODs of 100, 30, 30, 20, 100, 600, 100, 20, and 80 pg/mL were achieved for As, Se, Sb, Sn, In, Cu, Cr, Pb and Tl, respectively. Determinations of Hg, Pb, Zn and Cd were performed using two-color excitation approaches and resulted in absolute LODs of 2, 30, 5 and 0.6 pg, respectively, and concentration LODs of 200, 3000, 500 and 60 pg/mL, respectively. The sensitivities achieved by the W-coil LIF approaches compare well with those reported by W-coil atomic absorption spectrometry, graphite furnace atomic absorption spectrometry, and graphite furnace electrothermal atomization-LIF approaches. The accuracy of the approach was verified through the analysis of a multielement reference solution containing Sb, Pb and Tl which each had certified performance acceptance limits of 19.6-20.4 μg/mL. The determined concentrations were 20.05 ± 2.60, 20.70 ± 2.27 and 20.60 ± 2.46 μg/mL, for Sb, Pb and Tl, respectively. The results demonstrate that W-coil LIF provides good analytical performance for trace analyses due to its high sensitivity, linearity, and capability to measure multiple elements using a single tunable laser and suggest that the development of portable W-coil LIF instrumentation using compact, solid-state lasers is feasible.  相似文献   

12.
Koshino Y  Narukawa A 《Talanta》1993,40(6):799-803
Trace Mn, Fe and Cu in sodium were determined by chemical modification/graphite furnace atomic absorption spectrometry. The sodium sample was changed into NaOH in a desiccator by room temperature water vapor generated under reduced pressure, then the NaOH was dissolved in water and HNO(3) was added to give a clear solution. The solution was analysed by chemical modification/graphite furnace atomic absorption spectrometry. A nickel nitrate modifier was effective in improving integrated absorbance signals and the reproducibility of measurement. Analytical results for Mn, Fe and Cu were 170, 970 and 210 ng/g and relative standard deviations (n = 5) were 3.5, 5.8 and 6.7%, respectively. These results agreed with the values obtained from a chelating resin preconcentration/ICP-AES method.  相似文献   

13.
选用了中国宁夏中宁早康枸杞园林场生产的枸杞、山东省沾化金丝枣、山西柳林县红枣,用火焰原子吸收分光光度法[1]和石墨炉法对这三种样品中的金属元素Fe、Cu、Zn、Mn、Ca、Pb的含量进行了测定。测定方法简单,精密度和灵敏度高,回收率为105.1%~93.1%,结果可靠。  相似文献   

14.
Summary 8-Hydroxyquinoline (8-HOQ) was used for the preconcentration of Cd, Cu, Mn, Pb and Zn from seawater prior to their determination by graphite furnace atomic absorption spectrometry using an inner miniature cup for solid sampling technique. The metal ions in seawater were precipitated quantitatively in the pH range 7–8.5 with 8-HOQ alone. The precipitate thus formed was directly analysed by an atomic absorption spectrometer equipped with a specially deviced graphite furnace and miniature cup. The present method was confirmed to be highly reliable for analysis of seawater. Detection limits (3b) for Cd(II), Cu(II), Mn(II), Pb(II) and Zn(II) are 1.4, 10, 5, 10, and 6 ng l–1, respectively, for the analysis of a 400-ml portion of seawater samples. Corresponding precision of 6–14% is typical for determination 5-fold above the detection limits.
Direkte Analyse von Feststoffproben durch AAS nach Anreicherung von Spurenelementen aus Meerwasser mit 8-Hydroxychinolin
  相似文献   

15.
采用火焰和石墨炉原子吸收光谱法对随机抽取的江西省、吉林省共五种大米中的Fe、Cu、Zn、Mn、Ca、Pb等六种金属元素进行了测定。结果表明,江西省大米中的金属元素含量均略高于吉林省前谷县达里巴乡大米,这可能与南北土壤中金属元素的分布不同有关。  相似文献   

16.
The coprecipitation method using indium phosphate as a new coprecipitant has been developed for the separation of trace elements in table salts prior to their determination using inductively coupled plasma atomic emission spectrometry (ICP-AES). Indium phosphate could quantitatively coprecipitate 27 trace elements, namely, Be, Ti, Cr, Mn, Fe, Co, Ni, Cu, Zn, Cd, Pb, Sc, Y, La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, and Lu, in a table salt solution at pH 10. The rapid coprecipitation technique, in which complete recovery of the precipitate was not required in the precipitate-separation process, was completely applicable, and, therefore, the operation for the coprecipitation was quite simple. The coprecipitated elements could be determined accurately and precisely by ICP-AES using indium as an internal standard element after dissolution of the precipitate with 5 mL of 1 mol L−1 nitric acid. The detection limits (three times the standard deviation of the blank values, n = 10) ranged from 0.001 μg (Lu) to 0.11 μg (Zn) in 300 mL of a 10% (w/v) table salt solution. The method proposed here could be applied to the analyses of commercially available table salts.  相似文献   

17.
Two digestion-free methods for trace analysis of boron nitride based on graphite furnace atomic absorption spectrometry (GFAAS) and electrothermal vaporization inductively coupled plasma spectrometry optical emission (ETV-ICP-OES) using direct solid sampling have been developed and applied to the determination of Al, Ca, Cr, Cu, Fe, Mg, Mn, Si, Ti and Zr in four boron nitride materials in concentration intervals of 1–23, 54–735, 0.05–21, 0.005–1.3, 1.6–112, 4.5–20, 0.03–1.8, 6–46, 38–170 and 0.4–2.3 μg g− 1, respectively. At optimized experimental conditions, with both methods, effective in-situ analyte/matrix separation was achieved and calibration could be performed using calibration curves measured with aqueous standard solutions. In solid sampling GFAAS, before sampling, the platform was covered with graphite powder and, for determination of Si, also the Pd/Mg(NO3)2 modifier was used. In the determination of all analyte elements by solid sampling ETV-ICP-OES, Freon R12 was added to argon carrier gas. For solid sampling GFAAS and ETV-ICP-OES, the achievable limits of detection were within 5 (Cu)–130 (Si) ng g− 1 and 8 (Cu)–200 (Si) ng g− 1, respectively. The results obtained by these two methods for four boron nitride materials of different purity grades are compared each with the other and with those obtained in analysis of digests by ICP-OES. The performance of the two solid sampling methods is compared and discussed.  相似文献   

18.
Summary A liquid membrane emulsion was developed for the simultaneous extraction and preconcentration of traces of Cd, Co, Cu, Fe, Mn, Ni, Pb and Zn in potable liquids. After preconcentration, the eight elements were determined by flame atomic absorption spectrometry (FAAS). The results of analyses of potable water, beer and soft drinks, each from five or six different sources are listed. Data from the preconcentration method were compared with corresponding data obtained from the direct determination of the elements by graphite furnace atomic absorption spectrometry (GFAAS). Differences in results for trace elements between the liquid membrane emulsion-FAAS method and the GFAAS method were in the ranges of ±10% (water), ±9% (beer) and ±14% (soft drinks) for most of the trace elements. The satisfactory agreement meant that analyses of such liquids for trace elements can be carried out accurately with less expensive and widely available FAAS equipment.  相似文献   

19.
为给芦蒿中微量元素的检测提供科学方法。采用浓硝酸微波消解法处理样品,用火焰原子吸收分光光度法和石墨炉法对芦蒿样品中的金属元素Fe、Cu、Zn、Mn、Ca、Pb的含量进行了测定。结果表明,方法的加样回收率为96.80%~103.04%。该法操作简单、结果准确,是芦蒿中微量元素检测的理想方法。  相似文献   

20.
Jim G  Katskov D  Tittarelli P 《Talanta》2011,83(5):1687-1694
The vaporization of sulfur containing samples in graphite vaporizers for atomic absorption spectrometry is accompanied by modification of sulfur by carbon and, respectively, appearance at high temperature of structured molecular absorption in 200-210 nm wavelength range. It has been proposed to employ the spectrum for direct determination of sulfur in coal; soundness of the suggestion is evaluated by analysis of coal slurry using low resolution CCD spectrometer with continuum light source coupled to platform or filter furnace vaporizers. For coal in platform furnace losses of the analyte at low temperature and strong spectral background from the coal matrix hinder the determination. Both negative effects are significantly reduced in filter furnace, in which sample vapor efficiently interacts with carbon when transferred through the heated graphite filter. The method is verified by analysis of coals with sulfur content within 0.13-1.5% (m/m) range. The use of coal certified reference material for sulfur analyte addition to coal slurry permitted determination with random error 5-12%. Absolute and relative detection limits for sulfur in coal are 0.16 μg and 0.02 mass%, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号