首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
Liouville-type theorems are powerful tools in partial differential equations. Boundedness assumptions of solutions are often imposed in deriving such Liouville-type theorems. In this paper, we establish some Liouville-type theorems without the boundedness assumption of nonnegative solutions to certain classes of elliptic equations and systems. Using a rescaling technique and doubling lemma developed recently in Polá?ik et al. (2007) [20], we improve several Liouville-type theorems in higher order elliptic equations, some semilinear equations and elliptic systems. More specifically, we remove the boundedness assumption of the solutions which is required in the proofs of the corresponding Liouville-type theorems in the recent literature. Moreover, we also investigate the singularity and decay estimates of higher order elliptic equations.  相似文献   

3.
In this paper, we study the local existence and uniqueness of classical solutions to a wide class of systems of chemotaxis equations. These systems are essentially quasi-linear strongly coupled partial differential equations. We also study the maximal interval of existence in time of solutions. The results are illustrated in application to a number of partial differential equation models arising in biology.  相似文献   

4.
Abstract. In the present paper, we deal with the long-time behavior of dissipative partial differenttial equations, and we construct the approximate inertial mardfolds for the nonlbaear Stringer equation with a zero order dlssipation. The order of approximation of these manlfolde to the global attractor is derived.  相似文献   

5.
The numerical differentiation is often used when dealing with the differential equations. Using the numerical differentiation, the differential equations can be transformed into algebraic equations. Then we can get the numerical solution from the algebraic equations. But the numerical differentiation process is very sensitive to even a small level of errors. In contrast, it is expected that on average the numerical integration process is much less sensitive to errors. In this paper, we provide a new method using the DQ method based on the interpolation of the highest derivative (DQIHD) for the differential equations. The original function is then obtained by integration. In this paper, the DQIHD method was applied to the buckling analysis of thin isotropic plates and Winkler plates, the numerical results agree well with the analytic solutions, and the results show that our method is of high accuracy, of good convergence with little computational efforts. And it is easy to deal with the boundary conditions.  相似文献   

6.
In this work we study the blow up phenomena for some scalar delay differential equations. In particular, we make connection with the blow up of ordinary differential equations that are related to the delay differential equations. The first author is supported by a Grant from TWAS under contract No: 03-030 RG/MATHS/AF/AC. The second author is supported by a grant from the Lebanese National Council for Scientific Research.  相似文献   

7.
In this paper we study the homeomorphic properties of the solutions to one dimensional backward stochastic differential equations under suitable assumptions, where the terminal values depend on a real parameter. Then, we apply them to the solutions for a class of second order quasilinear parabolic partial differential equations.  相似文献   

8.
We study the asymptotic behavior of solutions of discrete nonlinear Schrödinger-type (DNLS) equations. For a conservative system, we consider the global in time solvability and the question of existence of standing wave solutions. Similarities and differences with the continuous counterpart (NLS-partial differential equation) are pointed out. For a dissipative system we prove existence of a global attractor and its stability under finite-dimensional approximations. Similar questions are treated in a weighted phase space. Finally, we propose possible extensions for various types of DNLS equations.  相似文献   

9.
In this paper, we establish some new nonlinear integral inequalities of the Gronwall–Bellman–Ou-Iang-type in two variables. These on the one hand generalizes and on the other hand furnish a handy tool for the study of qualitative as well as quantitative properties of solutions of differential equations. We illustrate this by applying our new results to certain boundary value problem.  相似文献   

10.
In this paper, we are interested in numerical solutions of stochastic functional differential equations with jumps. Under a global Lipschitz condition, we show that the pth-moment convergence of Euler-Maruyama numerical solutions to stochastic functional differential equations with jumps has order 1/p for any p≥2. This is significantly different from the case of stochastic functional differential equations without jumps, where the order is 1/2 for any p≥2. It is therefore best to use the mean-square convergence for stochastic functional differential equations with jumps. Moreover, under a local Lipschitz condition, we reveal that the order of mean-square convergence is close to 1/2, provided that local Lipschitz constants, valid on balls of radius j, do not grow faster than logj.  相似文献   

11.
Modulating pulse solutions play a big rôle in modern long distance high speed communication. Such solutions consist of a traveling pulse-like envelope modulating an underlying electromagnetic wave. In this paper we show that under certain assumptions such solutions exist and are dynamically stable for the associated nonlinear partial differential equations, namely Maxwells integro-differential equations describing nonlinear optics. The analysis is worked out in detail for bulk media, and we discuss how the results extend to optical fibers and to parametrically forced systems.  相似文献   

12.
In this paper, we elaborated a spectral collocation method based on differentiated Chebyshev polynomials to obtain numerical solutions for some different kinds of nonlinear partial differential equations. The problem is reduced to a system of ordinary differential equations that are solved by Runge–Kutta method of order four. Numerical results for the nonlinear evolution equations such as 1D Burgers’, KdV–Burgers’, coupled Burgers’, 2D Burgers’ and system of 2D Burgers’ equations are obtained. The numerical results are found to be in good agreement with the exact solutions. Numerical computations for a wide range of values of Reynolds’ number, show that the present method offers better accuracy in comparison with other previous methods. Moreover the method can be applied to a wide class of nonlinear partial differential equations.  相似文献   

13.
This paper deals with a new solution concept for partial differential equations in algebras of generalized functions. Introducing regularized derivatives for generalized functions, we show that the Cauchy problem is wellposed backward and forward in time for every system of linear partial differential equations of evolution type in this sense. We obtain existence and uniqueness of generalized solutions in situations where there is no distributional solution or where even smooth solutions are nonunique. In the case of symmetric hyperbolic systems, the generalized solution has the classical weak solution as macroscopic aspect. Two extensions to nonlinear systems are given: global solutions to quasilinear evolution equations with bounded nonlinearities and local solutions to quasilinear symmetric hyperbolic systems.  相似文献   

14.
We consider a class of ultraparabolic differential equations that satisfy the Hörmander’s hypoellipticity condition and we prove that the weak solutions to the equation with measurable coefficients are locally bounded functions. The method extends the Moser’s iteration procedure and has previously been employed in the case of operators verifying a further homogeneity assumption. Here we remove that assumption by proving some potential estimates and some ad hoc Sobolev type inequalities for solutions.  相似文献   

15.
We consider nonlinear elliptic equations driven by the p-Laplacian differential operator. Using degree theoretic arguments based on the degree map for operators of type (S)+ , we prove theorems on the existence of multiple nontrivial solutions of constant sign.  相似文献   

16.
This paper presents a partial classification for C type-changing symplectic Monge-Ampère partial differential equations (PDEs) that possess an infinite set of first-order intermediate PDEs. The normal forms will be quasi-linear evolution equations whose types change from hyperbolic to either parabolic or to zero. The zero points can be viewed as analogous to singular points in ordinary differential equations. In some cases, intermediate PDEs can be used to establish existence of solutions for ill-posed initial value problems.  相似文献   

17.
We prove that some conditions are sufficient for regions to be invariant with respect to strongly coupled quasilinear parabolic systems indivergence form. This result can be applied to certain two population systems where we can compute the boundaries of the invariant regions by solving ordinary differential equations. Under simple conditions on the parameters we get bounded invariant regions.  相似文献   

18.
We consider monotone semigroups in ordered spaces and give general results concerning the existence of extremal equilibria and global attractors. We then show some applications of the abstract scheme to various evolutionary problems, from ODEs and retarded functional differential equations to parabolic and hyperbolic PDEs. In particular, we exhibit the dynamical properties of semigroups defined by semilinear parabolic equations in RN with nonlinearities depending on the gradient of the solution. We consider as well systems of reaction-diffusion equations in RN and provide some results concerning extremal equilibria of the semigroups corresponding to damped wave problems in bounded domains or in RN. We further discuss some nonlocal and quasilinear problems, as well as the fourth order Cahn-Hilliard equation.  相似文献   

19.
We study power series whose coefficients are holomorphic functions of another complex variable and a nonnegative real parameter s, and are given by a differential recursion equation. For positive integer s, series of this form naturally occur as formal solutions of some partial differential equations with constant coefficients, while for s=0 they satisfy certain perturbed linear ordinary differential equations. For arbitrary s?0, these series solve a differential-integral equation. Such power series, in general, are not multisummable. However, we shall prove existence of solutions of the same differential-integral equation that in sectors of, in general, maximal opening have the formal series as their asymptotic expansion. Furthermore, we shall indicate that the solutions so obtained can be related to one another in a fairly explicit manner, thus exhibiting a Stokes phenomenon.  相似文献   

20.
When symmetries of differential equations are applied, various types of associated systems of equations appear. Compatibility conditions of the associated systems expressed in the form of differential equations inherit Lie symmetries of the initial equations. Invariant solutions to compatibility systems are known as orbits of partially invariant and generic solutions involved in the Lie group foliation of differential equations and so on. In some cases Bäcklund transformations and differential substitutions connecting quotient equations for compatibility conditions and initial systems naturally arise. Besides, Ovsiannikov's orbit method for finding partially invariant solutions is essentially based on such symmetries.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号