首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The title compound was synthesized by reaction of Cu(ClO4)2, picolinic acid and carbamide in C2H5OH/CH3CN solution, and characterized by single-crystal X-ray diffraction. It crystallizes in the orthorhombic system, space group Pbca with a=14.0481(8), b=9.0130(5), c=18.626(1)?, V=2358.3(2)?3Z=4, Dx=1.771g·cm-3, μ=1.235mm-1 and F(000)=1276. The final R factor is 0.0440 for 1434 observed reflections. The X-ray analysis revealed that the copper(Ⅱ) atom is coordinated by two picolinic ligands in the equatorial plane, while the two oxygen atoms of perchlorate occupy the axial positions of octahedron with lengthened Cu-O distances, resulting in a 4+2 elongated octahedral environment. In the compound, there also exist two protonated carbamide cations for charge balance. CCDC: 195354.  相似文献   

2.
Reactions of [(dtc)2Mo2(S)2(μ-S)2] with one or two equivalents of CuBr in CH2Cl2 afforded two new heterobimetallic sulfide clusters, [(dtc)2Mo23-S)(μ-S)3(CuBr)] (1) and [(dtc)2Mo23-S)4(CuBr)2] (2). Both compounds were characterized by elemental analysis, IR, UV-vis and X-ray analysis. Compound 1 contains a butterfly-shaped Mo2S4Cu core in which one CuBr unit is coordinated by one bridging S and two terminal S atoms of the [(dtc)2Mo2(S)2(μ-S)2] moiety. In the structure of 2, one [(dtc)2Mo2(S)2(μ-S)2] moiety and two CuBr units are held together by six Cu-μ3-S bonds, forming a cubane-like Mo2S4Cu2 core.  相似文献   

3.
A new polymer azido-bridged copper(II) complex [Cu4(En)21,1-N3)41,1,1-N3)21,3-N3)2] n (I) (En = ethylenediamine) has been synthesized and crystallography characterized. Complex I shows one-dimensional coordination polymeric structure based on a tetranuclear cluster unit [Cu4(En)21,1-N3)41,1,1-N3)21,3-N3)2], in which the azido ions display three different bridging modes.  相似文献   

4.
Single crystals of Cs4[(UO2)2(C2O4)(SO4)2(NCS)2] · 4H2O (I) and (NH4)4[(UO2)2(C2O4)(SO4)2(NCS)2] · 6H2O (II) have been synthesized and studied by X-ray diffraction. The crystals of both compounds are orthorhombic with the space group Pbam, Z = 2, and unit cell parameters a = 12.0177(3) ?, b = 18.6182(5) ?, c = 6.7573(10) ?, R = 0.0376 (I); a = 11.6539(9) ?, b = 18.3791(13) ?, c = 6.7216(5) ?, R = 0.0179 (II). The main structural units of crystals I and II are [(UO2)2(C2O4)(SO4)2(NCS)2]4− chains belonging to the crystal-chemical group A2K02B22M21 (A = UO22+, K02 = C2O42−, B2 = SO42−, M1 = NCS) of the uranyl complexes. The uranium-containing chains are joined into a three-dimensional framework due to a system of electrostatic interactions with the cesium or ammonium ions in the structure of I. In the structure of II, this framework is additionally stabilized by hydrogen bonds involving the outer-sphere water molecules and ammonium ions. Original Russian Text ? I.V. Medrish, A.V. Virovets, E.V. Peresypkina, L.B. Serezhkina, 2008, published in Zhurnal Neorganicheskoi Khimii, 2008, Vol. 53, No. 7, pp. 1115–1120.  相似文献   

5.

Abstract  

Thermolysis of cis-Fe(CO)4(SiCl3)2 results in the formation of the novel compound Fe2(CO)62-SiCl2)3, which was characterized by single crystal X-ray diffraction. Density functional theory calculations were carried out to elucidate possible reaction steps leading to the formation of Fe2(CO)6(SiCl2)3, including CO dissociation and chlorine abstraction by a SiCl3 radical generated from homolytic Fe–Si bond cleavage involving a singlet–triplet intersystem crossing.  相似文献   

6.
Oxo/hydoxo zirconium(IV) complex of the general formula [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 has been isolated, when Zr(OiPr)4 reacted with a 2-fold excess of 3,3-dimethylbutyric acid. Single crystal X-ray diffraction data, collected at 103 and 153 K, showed that the studied compound crystallizes in hexagonal system (P63/m (no. 176)). Structure consists of dimers composed of [Zr63-O)43-OH)4(OOCCH2tBu)9] sub-units, linked by six μ2-OH bridges. Infrared spectroscopic studies proved the presence of hydroxo groups in the structure of studied clusters and formation of different types of oxo/hydroxo bridges. The application of variable temperature infrared spectroscopy and differential scanning calorimetry revealed that the structure of this complex undergoes the phase transitions at 143–183 and 203–293 K. Comparison of spectral and crystallographic data suggests that these phase transitions might be related to changes in the strength of Zr–O bonds of μ2-OH bridges linking complex sub-units, and change in symmetry of the crystal lattice (from hexagonal to trigonal). Analysis of thermogravimetric data showed that decomposition of [Zr63-O)43-OH)4(OOCCH2tBu)92-OH)3]2 proceeds with complete conversion to ZrO2 (monoclinic form) between 603 and 803 K.  相似文献   

7.
A single crystal of [Pd(NH3)4]3[Ir(NO2)6]2·H2O double complex salt is studied by X-ray diffraction. Crystallographic characteristics are as follows: a = 21.0335(5) ?, b = 8.0592(2) ?, c = 21.3452(5) ?, β = 91.254(1)°, V = 3617.43(15) ?3, P21/c space group, Z = 4, d x = 2.714 g/cm3. Single-layer pseudohexagonal packing of complex anions is determined along the [−1 0 1] direction in the structure. Complex cations and crystallization water molecules are located between the mentioned layers.  相似文献   

8.
Reaction of silver(I) halides with PPh3 in acetonitrile and then with pyridine-2-thione (pySH) chloroform (1:1:1 molar ratio) has yielded sulfur bridged dimers of general formula, [Ag2X2(μ-S-pySH)2(PPh3)2] (X = Cl, 1, Br, 2). Both these complexes have been characterized using analytical data, NMR spectroscopy and single crystal X-crystallography. The central Ag2S2 cores form parallelograms with unequal Ag–S bond distances (2.5832(8), 2.7208(11) Å) in 1 and (2.6306(4), 2.6950(7) Å) in 2, respectively. The Ag?Ag contacts of compounds 1 and 2 are 3.8425(8) and 3.8211(4) Å, respectively. The angles around Ag (in the range 87.19(2)–121.71(2)° in 1 and 87.81(2)–121.53(2)° in 2) reveal highly distorted tetrahedral geometry. There are inter dimer π–π stacking interactions between pyridyl rings (inter ring distances of 3.498 and 3.510 Å in complexes 1 and 2, respectively). The solution state 31P NMR spectroscopy has shown the existence of both monomers and dimers. The studies reveal relatively weaker intramolecular –NH?Cl hydrogen bonding in case of AgCl vis-à-vis that in CuCl which favored both a monomer and a dimer with AgCl, and only a monomer with CuCl.  相似文献   

9.
The cyclopentadienylchromium carbonyl thiocarbonyls Cp2Cr2(CS)2(CO)n (n = 4, 3, 2, 1) have been studied by density functional theory using the B3LYP and BP86 functionals. The lowest energy Cp2Cr2(CS)2(CO)4 structure can be derived from the experimentally characterized unbridged Cp2Cr2(CO)6 structure by replacing the two terminal carbonyl groups furthest from the Cr-Cr bond with two terminal CS groups. The two lowest energy Cp2Cr2(CS)2(CO)3 structures have a single four-electron donor η2-μ-CS group and a formal Cr-Cr single bond of length ∼3.1 Å. In contrast to the carbonyl analogue Cp2Cr2(CO)5 these Cp2Cr2(CS)2(CO)3 structures are viable with respect to disproportionation into Cp2Cr2(CS)2(CO)4 and Cp2Cr2(CS)2(CO)2 and thus are promising synthetic targets. The lowest energy Cp2Cr2(CS)2(CO)2 structures have all two-electron donor CO and CS groups and short CrCr distances around ∼2.3 Å suggesting the formal triple bonds required to give the chromium atoms the favored 18-electron configurations. These Cp2Cr2(CS)2(CO)2 structures are closely related to the known structure for Cp2Cr2(CO)4. In addition, several doubly bridged structures with four-electron donor η2-μ-CS bridges are found for Cp2Cr2(CS)2(CO)2 at higher energies. The global minimum Cp2Cr2(CS)2(CO) structure is a triply bridged triplet with a CrCr triple bond (2.299 Å by BP86). A higher energy singlet Cp2Cr2(CS)2(CO) structure has a shorter Cr-Cr distance of 2.197 Å (BP86) suggesting the formal quadruple bond required to give each chromium atom the favored 18-electron configuration.  相似文献   

10.
Two novel polynuclear complexes with methanoate anions and 3-hydroxypyridine ligands [Cu(μ-HCO2)2(3-pyOH)]n (1) and [Cu2(μ-HCO2)2(μ-3-pyOH)2(3-pyOH)2(HCO2)2]n (2), respectively, were synthesized and characterized. The central copper atom in 1 is surrounded by four methanoates and a 3-pyOH molecule, forming a square-pyramidal CuO3NO chromophore. All the methanoates are bidentate and serve as bridges between the adjacent copper ions via syn-anti and anti–anti coordination. The basal square coordination axes are formed by O(syn), N(3-pyOH) (1.974(2), 2.016(2) Å) and O(anti), O(anti) (1.945(2), 1.960(2) Å), while the third O(anti) (2.247(2) Å) is on the top of the pyramid. A ferromagnetic transition with an exchange constant 2J/kB = 9.2 cm−1 is found for 1 below 20 K. This interaction probably takes place through two syn-anti methanoates extended in a chain through the 2D structure. On the other hand, two monoatomic Cu–O–Cu intra-dinuclear asymmetric (1.986(2), 2.415(2) Å) bridges of two methanoates in [Cu2(HCO2)4(3-pyOH)4] (2) are present. An elongated distorted octahedral coordination sphere around each copper(II) atom is completed by an additional monodentate terminal methanoate (1.975(2) Å), two N-coordinated 3-pyOH (2.005(2), 2.002(2) Å) and the third weakly O-coordinated 3-pyOH (2.732(2) Å). Although a shorter Cu?Cu distance is noticed in 2 than in 1 (4.690(1) Å 1, 3.442(1) Å 2), much weaker ferromagnetism is found in 2.  相似文献   

11.
The structures of the crystals of Ba4[trans(N)-Co(Ida)2]3[cis-(N)-Co(Ida)2]2(ClO4)3 · 19.46H2O · 2CH3OH (I) and Ba[trans-(N)-Co(Ida)2]2 · 7H2O (II) (H2Ida is iminodiacetic acid) were determin by X-ray diffraction. The crystals of I containing two geometric isomers of the complex anions [Co(Ida)2] were obtained by a slow cooling of a hot solution, which contained initially only the cis-isomer. One Ba atom in I interacts with the trans-complex and with two cis-complexes to give a three-dimensional framework in crystal I. The positive charge of the last framework is compensated by one more trans-complex and by the perchlorate ions, one of which acts as a bidentate ligand with respect to the Ba atom. The crystals of II are built of the chains with the alternating Ba atoms and the trans-(N)-[Co(Ida)2] anions. The other anions of the same structure are each “suspended” to the Ba atoms of the chain. Original Russian Text ? M. Zabel, A.I. Poznyak, V.I. Pawlowskii, 2008, published in Koordinatsionnaya Khimiya, 2008, Vol. 34, No. 11, pp. 831–836.  相似文献   

12.
The title dimanganese complexes react with NO (5% in N2) at room temperature to give as major products the corresponding hexanitrosyl derivatives [Mn2(NO)6(μ-L2)] in moderate yields, and they react rapidly with NO2 to give the corresponding hydride derivatives [Mn2(μ-H)(μ-NO2)(CO)6(μ-L2)], these having a nitrite ligand bridging the dimetal centre through the N and O atoms. The dppm-bridged dihydride also reacts selectively at 273 K with (PPN)NO2 to give first the nitro derivative (PPN)[Mn2(μ-H)(H)(NO2)(CO)6(μ-dppm)], which then transforms into the nitrosyl complex (PPN)[Mn2(μ-CO)(CO)5(NO)(μ-dppm)] at room temperature or above (dppm = Ph2PCH2PPh2; PPN+ = [N(PPh3)2]+). The latter anion reacts with (NH4)PF6 to give the hydride-bridged nitrosyl complex [Mn2(μ-H)(μ-NO)(CO)6(μ-dppm)] and with [AuCl(PPh3)] to give the trinuclear cluster [AuMn2(μ-NO)(CO)6(μ-dppm)(PPh3)] (Mn-Au = ca. 2.68 Å; Mn-Mn = 2.879(2) Å). Both products are derived from the addition of the added electrophile at the intermetallic bond and rearrangement of the nitrosyl ligand into a bridging position. In contrast, methylation of the anion with CF3SO3Me takes place at the nitrosyl ligand to yield the unstable methoxylimide derivative [Mn2(μ-NOMe)(CO)6(μ-dppm)]. Analogous reactions at the nitrosyl ligand take place upon the addition of HBF4·OEt2 to the nitrosyl-bridged hydrides [Mn2(μ-H)(μ-NO)(CO)n(μ-dppm)m] (n = 6, m = 1; n = 4, m = 2) to give the corresponding hydroxylimide derivatives [Mn2(μ-H)(μ-NOH)(CO)n(μ-dppm)m]BF4, which were also thermally unstable and could not be isolated nor fully characterized.  相似文献   

13.
The sandwich-type [Na(UO2)2(H2O)4(BiW9O33)2]13− uranium (VI) has been synthesized by reacting the trivacant species of B-α-[BiW9O33]9− with and investigated by IR and UV–Vis spectroscopy, and elemental analysis. The X-ray single crystal analysis was carried out on Na13[Na(UO2)2(H2O)4(BiW9O33)2] · 33H2O (I) which crystallizes in the orthorhombic system, space group Pna21 with a = 33.8454(19) ?, b = 21.1484(12) ?, c = 13.2403(7) ?, α = 90°, β = 90°, γ = 90°, and Z = 4. The polyanion consists of two lacunary B-α-[BiW9O33]9− groups which sandwich two uranyl cations and one sodium cation. The uranium atoms adopt distorted pentagonal–bipyramidal coordination, achieved by two equatorial bonds to each BiW9O33 unit and one external water ligand. The coordination of each uranium atom is evident by the shift of νas(W–Ob–W) and νas(Bi–O) stretching vibrational bonds. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

14.
Two metal-organic coordination polymers [Cu(bpy)2(H2O)2](NO3)2·4.5C2H5OH (1) and [Cu2(bpy)(H2O)(L-pha) 2](NO3)2·H2O (2) (L-Hpha = L-phenylalanine, bpy = 4,4′-bipyridyl) are prepared by slow evaporation of an aqueous alcoholic solution of copper nitrate, L-phenylalanine, and 4,4′-bipyridyl. The structure and composition of the obtained compounds are determined by single crystal XRD. The framework of compound 1 is positively charged and forms two types of intersecting channels. Compound 2 is a homochiral metal-organic coordination polymer whose structure contains L-phenylalanine anions.  相似文献   

15.
A novel bimetallic 4f-3d metal-isonicotinic acid inorganic-organic hybrid complex [Tb0.5(C6NO2H5)3(H2O)2]2n ·(H3O)4n (ZnCl5) n (ZnCl4)2n (1) is synthesized. It has a one-dimensional polycationic chain-like structure. Photoluminescent investigation reveals that it displays interesting emissions in the violet, blue, green, and yellow regions.  相似文献   

16.
[Cu(TO)2(H2O)4](PA)2的合成和晶体结构   总被引:4,自引:0,他引:4       下载免费PDF全文
[Cu(TO)2(H2O)4](PA)2 was prepared by mixing the aqueous solution of 1,2,4-triazol-5-one(TO) and Cu(PA)2. The molecular structure and crystal structure of the title complex was determined by X-ray single crystal diffraction method. The crystal is triclinic, space group with a=0.7321(1)nm,b=0.7474(2)nm,c=1.3649(3)nm;α=88.65(2)°,β=85.63(1)°,γ=63.35(1)°;V=0.6655(2)nm3,Z=1. The Cu2+ coordinated with two TO molecule through its 2-nitrogen atom and four water molecules and showed an octahedral configuration.  相似文献   

17.
New mixed-ligand coordination compounds[Cd(DMSO)5(NCS)][Cr(NH3)2(NCS)4] · 3DMSO (I) and [Mn(DMSO)4(H2O)2][Cr(NH3)2(NCS)4]2 · 6DMSO · 2H2O (II) have been synthesized and studied by IR spectroscopy and X-ray diffraction analysis. The crystals of compound I are monoclinic, a = 14.5275(7), b = 23.1692(11), c = 14.6969(6) ?, β = 97.057(2)°, V = 4909.4(4) ?3, space group P21/c, Z = 4, ρcalcd = 1.507 g/cm3, R = 0.0556. The crystals of compound II are triclinic, a = 11.7784(3), b = 12.1760(3), c = 13.1922(2) ?, α = 85.5420(10)°, β = 87.9000(10)°, γ = 70.3680(10)°, V = 1776.46(7) ?3, space group P , Z = 1, ρcalcd = 1.444 g/cm3, R = 0.0350. Original Russian Text ? E.A. Gerasimova, T.V. Utkina, E.V. Peresypkina, A.V. Virovets, T.G. Cherkasova, 2009, published in Zhurnal Neorganicheskoi Khimii, 2009, Vol. 54, No. 5, pp. 751–755.  相似文献   

18.
The synthesis and spectroscopic properties of a Na complex with ligand 3-aminopyrazine-2-carboxylic acid were described. The resulting complex was characterized by elemental analysis, IR, UV-Vis, NMR spectroscopy and single crystal X-ray diffraction method. The title compound crystallizes in the triclinic system with space group . The crystalline structure of this compound consists of supramolecular architectures involving strong intramolecular N—H…O in pyrazine molecules and intermolecular O—H…N, O—H…O, and N—H…N hydrogen bonds between substituted pyrazine and water molecules.  相似文献   

19.
The compounds [{VO(O2)2(NH3)}2{μ-Cu(NH3)4}] (1) and [Zn(NH3)4][VO(O2)2(NH3)]2 (2) were prepared and characterized by elemental analysis and infrared spectra. The single crystal X-ray study revealed that the structure of 1 consists of trinuclear complex molecules [(NH3)OV(O2)2{μ-Cu(NH3)4}(O2)2VO(NH3)] with a rare heterobimetalic peroxo bridge: copper(II)–peroxo ligand–vanadium(V). The structure of 2 is composed of tetraamminezinc(II) cations and ammineoxodiperoxovanadate(V) anions. In course of thermal decomposition of 1 performed up to 620 °C, the following intermediate products: [Cu(NH3)2(VO3)2], and subsequently a mixture of V2O5 with monoclinic β-Cu2V2O7, were gradually formed. The final product of decomposition is Cu(VO3)2. The thermal decomposition of 2 is a two-step process. In the first stage, [Zn(NH3)3(VO3)2] as supposed intermediate was formed, which transformed at higher temperatures by release of ammonia molecules to the monoclinic modification of Zn(VO3)2.  相似文献   

20.
The product of the thermal reaction between cobalt acetate hydrate and benzoic acid reacts with a triethylamine excess to form the trinuclear complex Co3(μ-OOCPh)4(μ,η2-OOCPh)2[OC(Ph)OHNEt3]2, and its reaction with 3,5-dimethylpyrazole yields the mononuclear complex Co(Hdmpz)2(OOCPh)2. The compound structures are discussed on the basis of X-ray crystallographic data.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号