首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The B3LYP/3‐21G* ab initio molecular orbital method from the Gaussian 94 computer program package was applied to study tricyclo[3,3,1,13,7]decane and tricyclo[3,3,1,13,7]decsilane molecules and their halogen derivatives (1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane, C10H12X4, and Si10H12X4). The optimized structures of these compounds were obtained. Ionization potentials, HOMO and LUMO energies, energy gaps, heats of formation, atomization energies, and vibration frequencies were calculated. These calculations indicate that these molecules are stable and have Td symmetry. Tricyclo[3,3,1,13,7]decsilane and its halogen derivatives (Si10H12X4) are found to have higher conductivity than that of tricyclo[3,3,1,13,7]decane and its halogen derivatives (C10H12X4). 1,3,5,7‐Tetraflourotricyclo[3,3,1,13,7]decane (C10H12F4) and 1,3,5,7‐tetraflourotricyclo[3,3,1,13,7]decsilane (Si10H12F4) were found to be the easiest compounds to form and the most difficult to dissociate of all 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decane and 1,3,5,7‐tetrahalotricyclo[3,3,1,13,7]decsilane compounds, respectively. ©1999 John Wiley & Sons, Inc. Int J Quant Chem 72: 189–198, 1999  相似文献   

2.
LnCl3 (Ln=Nd, Gd) reacts with C5H9C5H4Na (or K2C8H8) in THF (C5H9C5H4 = cyclopentylcyclopentadienyl) in the ratio of 1 : to give (C5H9C5H4)LnCl2(THF)n (orC8H8)LnCl2(THF)n], which further reacts with K2C8H8 (or C5H9C5H4Na) in THF to form the litle complexes. If Ln=Nd the complex (C8H8)Nd(C5H9C5H4)(THF)2 (a) was obtained: when Ln=Gd the 1 : 1 complex [(C8H8)Gd(C%H9)(THF)][(C8H8)Gd(C5H9H4)(THF)2] (b) was obtained in crystalline form.

The crystal structure analysis shows that in (C8H8)Ln(C5H9C5H4)(THF)2 (Ln=Nd or Gd), the Cyclopentylcyclopentadieny (η5), cyclooctatetraenyl (η8) and two oxygen atoms from THF are coordinated to Nd3+ (or Gd3+) with coordination number 10.

The centroid of the cyclopentadienyl ring (Cp′) in C5H9C5H4 group, cyclooctatetraenyl centroid (COTL) and two oxygens (THF) form a twisted tetrahedron around Nd3+ (or Gd3+). In (C8H8)Gd(C5H9C5H4)(THF), the cyclopentyl-cyclopentadienyl (η5), cyclooctatetraenyl (η8) and one oxygen atom are coordinated to Gd3+ with the coordination number of 9 and Cp′, COT and oxygen atom form a triangular plane around Gd3+, which is almost in the plane (dev. -0.0144 Å).  相似文献   


3.
The energy-localized CNDO/2 molecular orbitais have been calculated for the clusters containing molybdenum, > {Mo3S42Mo}8+ and> Mo3S4]CuI> 4+, versus the prototype arene-metal sandwich (C6H6)2Cr and half-sandwich complexes C6H6Cr(CO)3. The bonding characteristics of these compounds are described from a localization bonding viewpoint. There are two typical M-arene and M-[Mo3S4] bondings. One is formed by electron donation from the three-center two-electron π-bonds in the arene or [Mo3S4]4+ ligands into the vacant hybrid orbitais of the “stranger” metal atom. In the other M-arene or M-[Mo3S4] bond there is very little donation by the lone electron pair occupying the d AOs of the “stranger” metal atom to the arene or [Mo3S4]4+ ligands. The analogy of the ligand [Mo3S4]4+ in the clusters studied with the ligand benzene is also briefly discussed.  相似文献   

4.
Reactions of [C6F5Xe]+ [AsF6] in acetonitrile with halide anions X show different results depending on X. If X = I, Br or Cl, then C6F5X is obtained. If X = F, then C6F5H and C6F5---C6F5 are produced, and if X = HF2, then C6F6, C6F5H and C6F5---C6F5 are formed.  相似文献   

5.
We study here the reactions between C60 and planar C5H5+ cations that lead to the formation of [C60C5H5]+ adduct cations in the chemical ionization source of the mass spectrometer. The structures, stabilities and charge locations of some possible isomers of [C60C5H5]+: σ-adduct, π-complex, [1,4]- and [l,2]-addition cations, are studied by AM1 semiempirical molecular orbital calculations. We find that the most stable is the σ-addition cation. Another interesting and stable structure is the π-complex cation which is bonded by the electrostatic interaction at the inter-ring distance of 1.589 Å with the C5v symmetry. The C5H5+ cyclopentadienium cation seems to be an “inverted umbrella” sitting on a five-membered ring of the C60 cage.  相似文献   

6.
The interaction of [(η5-C5H4But)2YbCl · LiCl] with one equivalent of Li[(CH2) (CH2)PPh2] in tetrahydrofuran gave [Ph2PMe2][(η5-C5H4But)2Li] (1) and [(η5-C5H4But)2Yb(Cl)CH2P(Me)Ph2] (2) in 10% and 30% yields, respectively. 1 could also be prepared in 70% yield from the reaction of [Ph2PMe2][CF3SO3] with two equivalents of (C5H4But)Li. Both compounds have been fully characterized by analytical, spectroscopic and X-ray diffraction methods. The solid state structure of 1 reveals a sandwich structure for the [(η5-C5H4But)2Li] anion.  相似文献   

7.
The hydrothermal reactions of vanadium oxide starting materials with divalent transition metal cations in the presence of nitrogen donor chelating ligands yield the bimetallic cluster complexes with the formulae [{Cd(phen2)2V4O12]·5H2O (1) and [Ni(phen)3]2[V4O12]·17.5H2O (2). Crystal data: C48H52Cd2N8O22V4 (1), triclinic. a=10.3366(10), b=11.320(3), c=13.268(3) Å, =103.888(17)°, β=92.256(15)°, γ=107.444(14)°, Z=1; C72H131N12Ni2O29.5V4 (2), triclinic. a=12.305(3), b=13.172(6), c=15.133(4), =79.05(3)°, β=76.09(2)°, γ=74.66(3)°, Z=1. Data were collected on a Siemens P4 four-circle diffractometer at 293 K in the range 1.59° <θ<26.02° and 2.01°<θ<25.01° using the ω-scan technique, respectively. The structure of 1 consists of a [V4O12]4− cluster covalently attached to two {Cd(phen)2}2+ fragments, in which the [V4O12]4− cluster adopts a chair-like configuration. In the structure of 2, the [V4O12]4− cluster is isolated. And the complex formed a layer structure via hydrogen bonds between the [V4O12]4− unit and crystallization water molecules.  相似文献   

8.
A new approach in the synthesis of water-soluble boron-rich compounds was proposed. The closo-dodecaborate cage is used as a hydrophilic substitutent providing for the water-solubility of the molecule whereas the carborane cage can be used for attachment to biomolecules using earlier developed methods. The double-cage molecules [o-, m-, and p-CB10H10C(CH2)4OB12H11]2− were prepared by the reaction of the tetramethylene oxonium derivative of the closo-dodecaborate anion, [B12H11O(CH2)4], with the corresponding lithiated carboranes. The compounds obtained have doubled the boron contents and could serve for the synthesis of agents for boron neutron capture therapy (BNCT).  相似文献   

9.
The reaction of the anionic mononuclear rhodium complex [Rh(C6F5)3Cl(Hpz)]t- (Hpz = pyrazole, C3H4N2) with methoxo or acetylacetonate complexes of Rh or Ir led to the heterodinuclear anionic compounds [(C6F5)3Rh(μ-Cl)(μ-pz)M(L2)] [M = Rh, L2 = cyclo-octa-1,5-diene, COD (1), tetrafluorobenzobarrelene, TFB (2) or (CO)2 (4); M = Ir, L2 = COD (3)]. The complex [Rh(C6F5)3(Hbim)] (5) has been prepared by treating [Rh(C6F5)3(acac)] with H2bim (acac = acetylacetonate; H2bim = 2,2′-biimidazole). Complex 5 also reacts with Rh or Ir methoxo, or with Pd acetylacetonate, complexes affording the heterodinuclear complexes [(C6F5)3Rh(μ-bim)M(L2)] [M = Rh, L2 = COD (6) or TFB (7); M = Ir, L2 = COD (8); M = Pd, L2 = η3-C3H5 (9)]. With [Rh(acac)(CO)2], complex 5 yields the tetranuclear complex [{(C6F5)3Rh(μ-bim)Rh(CO)2}2]2−. Homodinuclear RhIII derivatives [{Rh(C6F5)3}2(μ-L)2]·- [L2 = OH, pz (11); OH, StBu (12); OH, SPh (13); bim (14)] have been obtained by substitution of one or both hydroxo groups of the dianion [{Rh(C6F5)3(μ-OH)}2]2− by the corresponding ligands. The reaction of [Rh(C6F5)3(Et2O)x] with [PdX2(COD)] produces neutral heterodinuclear compounds [(C6F5)3Rh(μ-X)2Pd(COD)] [X = Cl (15); Br (16)]. The anionic complexes 1–14 have been isolated as the benzyltriphenylphosphonium (PBzPh3+) salts.  相似文献   

10.
The bright red title compound 1 was synthesized from (2-lithiophenyl)diphenylamine and bis(pentafluorophenyl)boron chloride. Its reactions with small acids like H2O and HCl proceeded easily giving zwitterionic compounds. For 1 and its water adduct 2 the crystal structures were determined, the latter featuring an ammonium borate structure containing a short intramolecular hydrogen bond bridge. Treatment of 1 with Jutzi's acid, [H(OEt2)2][B(C6F5)4], did not result in protonation of the nitrogen, but reaction of 1 with LiH in the presence of 12-crown-4, led to the isolation of the aminoborate [1-(Ph2N)-2-{B(H)(C6F5)2}C6H4][Li(12-crown-4)] (3). Borohydride 3 reacted with Jutzi's acid to regenerate 1 and liberate hydrogen.  相似文献   

11.
Aiming to identify the spiro metallaaromatic systems with potential application value, (C10H10M)2?(M=Ni, Pd, Pt) derivatives were theoretically investigated. (C10H10M)2?-Iso1, which has two 6-membered rings(6MRs) connected by the M spiro atom, is a 14π-aromatic as a whole plane. (C10H10M)2?-Iso2 has one 6π-aromatic 5MR and one 10π-aromatic 7MR connected by the spiro atom. The free (C10H10M)2? dianions could not exist due to their rather high frontier orbital energies, while the neutral (C10H10M)Li2 compounds are extremely stable against dissociation. Since (C10H10M)Li2 coumponds are not fully coordinated, they trend to form (C10H10M)Li42+ dications, or even[(C10H10M)Li2]n polymers. Arguably, (C10H10M)2? planes are not the only examples for spiro metallaaromaticity, their derivatives are also potential material building blocks.  相似文献   

12.
Preparation and characterization of the first derivatives of the fused macropolyhedral anion [B22H22]2− are reported. The species [B22H21OH]2− (1) and [B22H21OEt]2− (2) are obtained from workup of the products of the reaction between HgBr2 and [NBzlEt3]2[B22H22]; a cluster involving the conjoining of a closo-B12 icosahedron with a nido-B10 cluster. Washing the products with ethanol followed by thin-layer chromatography allows the isolation of 1 and 2, reproducibly, in yields of 27 and 20%, respectively. The species were characterized by NMR spectroscopy, elemental analysis and X-ray diffraction studies. The crystal structure determinations of the two species identify novel features. Apparently the influence of the O atoms in the ions [B22H21OH]2− and [B22H21OEt]2− results in the lengthening of what was a gunwale B---B connection adjacent to the junction of the two cages such that the distances are 2.180 and 2.230 Å, respectively. These latter are longer than the corresponding distance in the parent species [B22H22]2−, which is 2.09 Å; quite long for a normal B---B distance. Thus it is assumed that these B atoms, in 1 and 2, one of which bears the substituent, are not bonded to each other.  相似文献   

13.
以氯化钴、 对叔丁基磺酰杯[4]芳烃(H4TC4A-SO2)和非对称性3-(1H-四唑-5-基)苯甲酸(H2L)为原料, 通过溶剂热法合成了一个具有四面体配位笼结构的16核化合物[Co16(TC4A-SO2)4(OH)4(L)8]·[(C8H20N)(C4H12N)2(C2H8N)]·solvent(Co16-TC4A-SO2). 采用X射线单晶衍射、 X射线粉末衍射、 热重分析、 红外光谱方法对配合物进行了表征. 将Co16-TC4A-SO2笼簇直接负载到碳纸上(Co16-TC4A-SO2/CP)用作工作电极, 其对析氧反应(OER)展现出较好的催化性能. 在1 mol/L KOH中, Co16-TC4A-SO2/CP在343.8 mV的过电位下达到10.0 mA/cm 2电流密度, Tafel斜率为79.31 mV/dec, 并且在20.0 mA/cm 2电流密度下表现出长达48 h的催化稳定性.  相似文献   

14.
The reactions of the half-sandwich molybdenum(III) complexes CpMo(η4-C4H4R2)(CH3)2, where Cp=η5-C5H5 and R=H or CH3, with equimolar amounts of B(C6F5)3 have been investigated in toluene. EPR monitoring shows the formation of an addition product which does not readily react with Lewis bases such as ethylene, pyridine, or PMe3. The analysis of the EPR properties and the X-ray structure of a decomposition product obtained from dichloromethane, [CpMo(η4-C4H6)(μ-Cl)(μ-CH2)(O)MoCp][CH3B(C6F5)3], indicate that the borane attack has occurred at the methyl position.  相似文献   

15.
The dimethylphosphino substituted cyclopentadienyl precursor compounds [M(C5Me4CH2PMe2)], where M=Li+ (1), Na+ (2), or K+ (3), and [Li(C5H4CR′2PMe2)], where R′2=Me2 (4), or (CH2)5 (5), [HC5Me4CH2PMe2H]X, where X=Cl (6) or PF6 (7) and [HC5Me4CH2PMe2] (8), are described. They have been used to prepare new metallocene compounds, of which representative examples are [Fe(η-C5R4CR′2PMe2)2], where R=Me, R′=H (9); R=H and R′2=Me2 (10), or (CH2)5 (11), [Fe(η-C5H4CMe2PMe3)2]I2 (12), [Fe{η-C5Me4CH2P(O)Me2}2] (13), [Zr(η-C5R4CR′2PMe2)2Cl2], where R=H, R′=Me (14), or R=Me, R′=H (15), [Hf(η-C5H4CMe2PMe2)2]Cl2] (16), [Zr(η-C5H4CMe2PMe2)2Me2] (17), {[Zr(η-C5Me4CH2PMe2)2]Cl}{(C6F5)3BClB(C6F5)3} (18), [Zr{(η-C5Me4CH2PMe2)2Cl2}PtI2] (19), [Mn(η-C5Me4CH2PMe2)2] (20), [Mn{(η-C5Me4CH2PMe2B(C6F5)3}2] (21), [Pb(η-C5H4CMe2PMe2)2] (23), [Sn(η-C5H4CMe2PMe2)2] (24), [Pb{η-C5H4CMe2PMe2B(C6F5)3}2] (25), [Pb(η-C5H4CMe2PMe2)2PtI2] (26), [Rh(η-C5Me4CH2PMe2)(C2H4)] 29, [M(η,κP-C5Me4CH2PMe2)I2], where M=Rh (30), or Ir, (31).  相似文献   

16.
The complex [MoW(μ-CC6H4Me-4)(CO)27-C7H7)(η5-C2B9H10Me)] reacts with diazomethane in Et2O containing EtOH to afford the dimetal compound [MoW(OEt)(μ-CH2){μ-C(C6H4Me-4)C(Me)O}(η7-C7H7)(η5-C2B9H10Me)]. The structure of this product was established by X-ray diffraction. The Mo---W bond [2.778(4) Å] is bridged by a CH2 group [μ-C---Mo 2.14(3), μ-C---W 2.02(3) Å] and by a C(C6H4Me-4)C(Me)O fragment [Mo---O 2.11(3), W---O 2.18(2), Mo---C(C6H4Me-4) 2.41(3), W---C(C6H4Me-4) 2.09(3), Mo---C(Me) 2.26(3) Å]. The molybdenum atom is η7-coordinated by the C7H7 ring and the tungsten atom is η5-coordinated by the open pentagonal face of the nido-icosahedral C2B9H10Me cage. The tungsten atom also carries a terminally bound OEt group [W---O 1.88(3) Å]. The 1H and 13C-{1H} NMR data for the dimetal compound are reported and discussed.  相似文献   

17.
[1,8-C10H6(NR)2]TiCl2 (3; R=SiMe3, SiiBuMe2, SiiPr3) complexes have been prepared from dilithio salts [1,8-C10H6(NR)2]Li2 (2) and TiCl4 in diethyl ether in moderate yields (60–63%). These complexes showed significant catalytic activities for ethylene polymerization and for ethylene/1-hexene copolymerization in the presence of methylaluminoxane (MAO), methyl isobutyl aluminoxane (MMAO), AliBu3– or AlEt3–Ph3CB(C6F5)4 as a cocatalyst. The catalytic activities performed in heptane (cocatalyst MMAO) were higher than those carried out in toluene (cocatalyst MAO): 709 kg-PE/mol-Ti·h could be attained for ethylene polymerization by using [1,8-C10H6(NSiiBuMe2)2]TiCl2–MMAO catalyst system.  相似文献   

18.
The reaction of [(C6H6)RuCl2]2 with 7,8-benzoquinoline and 8-hydroxyquinoline in methanol were performed. The obtained complexes have been studied by IR, UV–VIS, 1H and 13C NMR spectroscopy and X-ray crystallography. In the reaction with 8-hydroxyquinoline the arene ruthenium(II) complex oxidized to Ru(III). The electronic spectra of the obtained compounds have been calculated using the TDDFT method. Magnetic properties of [Ru(C9H6NO)3] · CH3OH complex suggest the antiferromagnetic coupling of the ruthenium centers in the crystal lattice. EPR spectrum of [Ru(C9H6NO)3] · CH3OH compound indicates single isotropic line only characteristic for Ru3+ with spin equal to 1/2.  相似文献   

19.
Three tetranuclear clusters [Ru4H4(CO)11(PPh3)] (1), [Ru4H2(CO)12(PPh3)] (2) and [Ru3IrH(CO)12(PPh3)] (3) were formed in the reaction of [Ir(CO)Cl(PPh3)2] and Na[Ru3H(CO)11] in tetrahydrofuran. Complexes 1–3 were characterized by IR and 1H and 31P NMR, and the structure of the clusters was confirmed by single crystal X-ray analysis. In 2 and 3 one of the carbonyls bridges between two ruthenium atoms; otherwise the compounds contain only terminal carbonyls.  相似文献   

20.
A coincidence technique is used to study the influence of the internal energy of the reactant ion on the cross section of the ion-molecule reactions in the C2H4+ + C2H4 system. The experiment is performed at thermal collision energies. In the ion-molecule reactions of C2H4+ + C2H4 our measurements indicate a barrier between the initially formed collision complex (C2H4)2+* and a tight complex (C4H8+)*. Using an extension of our earlier developed statistical model, now including a potential barrier between the initially formed loose complex (C2H4)2+* and the tight complex (C4H8+)*, our experimental data can be reproduced. For comparison also the internal energy dependence of the unimolecular decomposition of photoionised 1-C4H8+ is measured. Assuming that the photoionised 1-C4H8+ is identical with the tight (C4H8+)* complex, the model applied to the ion-molecule reactions describes also the unimolecular decay of 1-C4H8+ correctly, using the same set of parameters.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号