首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Synthetic gels with switchable interfacial properties have great potential in smart devices and controllable transport. Herein, we design an organogel by incorporating a binary liquid mixture with an upper critical solution temperature (UCST) into a polymer network, resulting in reversible modulation of lubrication and adhesion properties. As the temperature changes, the lubricating mechanism changes reversibly from boundary lubrication to hydrodynamic lubrication due to phase separation within the binary solution permeating the gel (friction coefficient 0.4–0.03). Droplets appear on the gel surface at low temperature and disappear with temperature higher than the critical phase separation temperature (Tps) of the organogel. The organogel possesses a relatively low ice adhesive strength (less than 1 kPa). This material has potential applications in anti‐icing and smart devices, and we believe that this design strategy can be expanded to other systems such as aqueous solutions and hydrogels.  相似文献   

2.
Multiblock ethylene‐1‐butene copolymers (PEB‐n) with graded ethylene content (where n is the number of ethyl branches per 100 backbone carbons) represent efficient cold filter plugging point (CFPP) depressants for crude oils and middle distillates. The aggregation behavior and the interaction with wax molecules of a tetrablock PEB‐2.6/PEB‐6.0/PEB‐10.9/PEB‐13.2 and triblock PEB‐6.5/PEB‐8.9/PEB‐10.1 copolymers in decane solutions were investigated over a wide temperature range by combining different small‐angle neutron scattering techniques and optical microscopy. The experimental results revealed in the decrease of temperature formation and evolution of multisized structural levels showing a hierarchical organization on the length scale from 1 nm up to 10 μm. One‐dimensional polymer aggregates arising as initial structures associate and branch that lead to the occurrence of complex macroaggregates with diffusive interfaces and sizes of several microns. The one‐dimensional copolymer structure shows longitudinal density modulation and micellar‐like substructures in neat polymer solutions. When wax is added, this structure becomes more homogeneous in decrease of temperature as a consequence of the cocrystallization of wax and copolymer. The wax crystallization in board‐like objects of much smaller size than required by the CFPP criterion of oil and refinery industry (filter mesh size of 45 μm) is templated and controlled by the assembling features of the crystalline–amorphous PEB‐n multiblock copolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2011  相似文献   

3.
1. Introduction Wax deposition from crude oil is an age-long prob- lem in the petroleum industry. This problem includes progressive precipitation and accumulation of waxes at the sand-face and perforations, tubings, surface production lines and storage tanks, thus limiting the production capacity of these facilities. Depending on the severity, wax deposition may lead to loss of production, mechanical failure of tubular equipment, increased production downtime, increased handling costs and mini…  相似文献   

4.
Two new peptide‐based isomers containing cholesterol and naphthalic groups have been designed and synthesized. We found that the position of L ‐alanine in the linker could tune the gelation properties and morphologies. The molecule with the L ‐alanine residue positioned in the middle of the linker ( 1 b ) shows better gelation behavior than that with L ‐alanine directly linked to the naphthalimido moiety ( 1 a ). As a result, a highly thermostable organogel of 1 b with a unique core–shell structure was obtained at high temperature and pressure in acetonitrile. Moreover, the gels of 1 a and 1 b could undergo an instantaneous gel‐to‐gel transition triggered by sonication. Ultrasound could break the core–shell microsphere of 1 b and the micelle structure of 1 a into entangled fibers. By studying the mechanism of the sonication‐triggered gel‐to‐gel transition process of these compounds, it can be concluded that ultrasound has a variety of effects on the morphology, such as cutting, knitting, unfolding, homogenizing, and even cross‐linking. Typically, ultrasound can cleave and homogenize π‐stacking and hydrophobic interactions among the gel molecules and then reshape the morphologies to form a new gel. This mechanism of morphology transformation triggered by sonication might be attractive in the field of material storage and controlled release.  相似文献   

5.
In this paper, wax deposition in waxy crude oil transportation process was regarded as an irreversible process. Based on the entropy production rate equations, the linear phenomenological equations for the diffusion of wax molecules were derived by using the theory and method of non-equilibrium thermodynamics and heat-mass transfer. Combined with the mass and energy conservation laws, the differential equations of heat and mass transfer in the process of pipeline transportation were established, and the molecular diffusion rate of dissolved wax was solved. On the basis of this, the mathematical model of actual wax deposition rate was established by considering the attachment process and scouring process of the wax molecules. Taking an oil pipeline in Daqing as an example, the change law and influencing factors of the wax molecular diffusion coefficient, the wax deposition rate, and the net wax deposition rate were studied by numerical simulation. The wax deposition rate test results of the laboratory loop test were compared with the theoretical calculation results in order to analyze the accuracy and the adaptability of heat and mass coupling mechanism and to provide a theoretical basis for further study of wax deposition in the process of waxy oil pipeline transportation.  相似文献   

6.
Organogels that are self‐assembled from simple peptide molecules are an interesting class of nano‐ and mesoscale soft matter with simplicity and functionality. Investigating the precise roles of the organic solvents and their effects on stabilization of the formed organogel is an important topic for the development of low‐molecular‐weight gelators. We report the structural transition of an organogel self‐assembled from a single dipeptide building block, diphenylalanine (L ‐Phe‐L ‐Phe, FF), in toluene into a flower‐like microcrystal merely by introducing ethanol as a co‐solvent; this provides deeper insights into the phase transition between mesostable gels and thermodynamically stable microcrystals. Multiple characterization techniques were used to reveal the transitions. The results indicate that there are different molecular‐packing modes formed in the gels and in the microcrystals. Further studies show that the co‐solvent, ethanol, which has a higher polarity than toluene, might be involved in the formation of hydrogen bonds during molecular self‐assembly of the dipeptide in mixed solvents, thus leading to the transition of organogels into microcrystals. The structural transformation modulated by the co‐solvent might have a potential implication in controllable molecular self‐assembly.  相似文献   

7.
Exploiting a superhydrophobic surface is very significant due to its excellent water repellency which has many practical applications in various fields. In this work, the cobalt incorporated amorphous carbon‐based (Co/a‐C:H) film was prepared successfully on Si substrate via a simple 1‐step electrochemical deposition where electrochemical deposition technology was using cobalt (II) acetylacetonate methanol solution as electrolyte under high voltage, atmospheric pressure, and low temperature. Surprisingly, the as‐prepared film showed a superior superhydrophobic surface with a water contact angle of 153 ± 1° and a sliding angle of 7.6° without any further modification of low surface energy materials. Especially, the tape adhesive, corrosion resistance, and self‐cleaning tests demonstrated that the as‐prepared carbon‐based film could possess fairly well adhesion, superior anti‐corrosion resistance, and self‐cleaning ability, respectively. It indicated that the superhydrophobic Co/a‐C:H film might have potential promising applications in the field of anti‐fouling, anti‐corrosion, and drag resistance, such as the above‐deck structures on icebreaker vessels, ship hulls, and offshore wind turbine blades.  相似文献   

8.
After (R)‐12‐hydroxystearic acid (HSA) was mixed at 100 °C with the castor oil‐modified poly(ε‐caprolactone) (CO‐PCL) prepared by the ring‐opening polymerization of ε‐caprolactone in the presence of castor oil, the mixture was gradually cooled to room temperature to give a solidified CO‐PCL/HSA composite. The CO‐PCL/HSA sample showed an exothermic peak at around 67–71 °C which was lower than the melting point of HSA (76.8 °C), indicating the formation of mesogenic HSA aggregates. The rheological measurement of the CO‐PCL/HSA revealed the formation of HSA organogel at around 67–55 °C during the cooling process from the melt. Furthermore, the polarized and normal optical microscopic analyses of CO‐PCL/HSA on the cooling stage revealed that anisotropic fibrous materials are formed at around 60 °C and then the fibrous network propagated over the matrix polymer. The flexural modulus and storage modulus of the CO‐PCL/HSA composite increased with increasing HSA content. The CO‐PCL/HSA composite annealed at 60 °C for 2 h on the cooling process had a higher flexural and storage modulus than the sample without annealing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1281–1289, 2010  相似文献   

9.
To improve the oil absorbency of caster oil‐based polyurethane foam, nano‐organic‐montmorillonite (OMMT) was used for the additives. The aim of this study is to evaluate the oil diffusion mechanism and dispersion uniformity of OMMT modified caster oil‐based polyurethane (MPU) using experiments and molecular dynamic simulation. Molecule movement and molecule trajectory of oil was investigated by molecular dynamic simulation and numerical simulation. According to the quantitative analyzing results, the diffusion model was put forward. The average diffusion coefficient of crude oil in 0, 1, 2 wt%, 4, and 6 wt% MPU is 2.4 × 10?4 cm2/s, 2.6 × 10?4 cm2/s, 3.0 × 10?4 cm2/s, 3.2 × 10?4 cm2/s, and 3.3 × 10?4 cm2/s, respectively. It indicated that crude oil appeared gradient in the MPU. The optimal diffusion direction of crude oil is (0, 0, 1) crystal face, and the small particles of crude oil are easy to be adsorbed. The two‐dimensional diffusion trajectory of crude oil is nonlinear. The diffusion model includes the diffusion of crude oil at the interface of oil and polyurethane, surface diffusion and pore diffusion, and pore adsorption. Furthermore, the diffusion model showed that the van der Waals force was the main reason for crude oil diffusion or adsorption. OMMT could improve the ability of oil/water separation of polyurethane.  相似文献   

10.
A simple and rapid solid‐phase microextraction approach for the isolation of polycyclic aromatic sulfur heterocycles from the aromatic fraction of crude oil is described. 8‐Hydroxyquinoline silica gel impregnated with palladium chloride was used as a sorbent material for extraction. Operational parameters of the extraction solvents have been evaluated and optimized. Benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene and their C1–C4 alkyl derivatives were identified and quantified by GC–MS. Under optimum conditions, the limits of detection for benzothiophene, dibenzothiophene, and benzo[b]naphtho[1,2‐d]thiophene were 0.277, 0.193, and 0.597 μg/g oil, respectively. The recoveries for the polycyclic aromatic sulfur heterocycles ranged from 81.5 to 92.1%, and the linear dynamic range was from 10 to 1000 ng/mL. The developed methodology was tested in the characterization of crude oil samples collected at the DY, SZ, ZH, and HC petroleum oil fields of the Bohai Sea. The results proved that SPE coupled with GC–MS is a promising tool for the quantitative analysis of polycyclic aromatic sulfur heterocycles in crude oils, especially for oil samples with low concentrations of polycyclic aromatic sulfur heterocycles.  相似文献   

11.
We investigated reduction of the matrix effect in time‐of‐flight secondary ion mass spectrometry (TOF‐SIMS) analysis by the deposition of a small amount of metal on the sample surfaces (metal‐assisted SIMS or MetA‐SIMS). The metal used was silver, and the substrates used were silicon wafers as electroconductive substrates and polypropylene (PP) plates as nonelectroconductive substrates. Irganox 1010 and silicone oil on these substrates were analyzed by TOF‐SIMS before and after silver deposition. Before silver deposition, the secondary ion yields from the substances on the silicon wafer and PP plate were quite different due to the matrix effect from each substrate. After silver deposition, however, both ion yields were enhanced, particularly the sample on the PP plate, and little difference was seen between the two substrates. It was therefore found that the deposition of a small amount of metal on the sample surface is useful for reduction of the matrix effect. By reducing the matrix effect using this technique, it is possible to evaluate from the ion intensities the order of magnitude of the quantities of organic materials on different substrates. In addition, this reduction technique has clear utility for the imaging of organic materials on nonuniform substrates such as metals and polymers. MetA‐SIMS is thus a useful analysis tool for solving problems with real‐world samples. Copyright © 2005 John Wiley & Sons, Ltd.  相似文献   

12.
Novel amphiphilic molecules composed of naphthylacryl and L ‐glutamide moieties (1‐NA and 2‐NA) have been designed and their organogel formation in various organic solvents as well as their self‐assembled nanostructures have been investigated. Both compounds formed organogels in many organic solvents, ranging from nonpolar to polar, and self‐assembled into essentially nanofiber structures, although some twist or belt structures could be observed in certain solvents. A gel of compound 2‐NA in ethanol initially self‐assembled into nanofibers and then these were transformed into a family of coaxial hollow toruloid‐like (CHTL) nanostructures under irradiation, in which various toroids and disks of different sizes were stacked coaxially. We have established that a topochemical [2+2] cycloaddition in the organogel triggers this transformation. When the gel was fabricated into xerogels in which no ethanol remained, such morphological changes could not happen. This might be the first report of an organogel, in which both organized nanofibers and solvent coexist, controlling a topochemical reaction as well as the self‐assembled nanostructures formed. Due to the formation of the toruloid‐like nanostructures, the gel collapsed to a precipitate. However, upon heating this precipitate with ethanol, it redissolved and then formed a gel and self‐assembled into nanofibers once more. Thus, a reversible morphological transformation between nanofibers and an unprecedented series of toruloid‐like nanostructures can be induced by alternately heating and irradiating the gel.  相似文献   

13.
Scaling usually causes serious problems in daily life and industrial production. Currently, developing passive anti-scaling coatings has shown promises to overcome this problem. In this work, we fabricated a scalable and robust bio-inspired organogel(BIO) coating, showing dynamic scale resistance in the oil/brine mixture. The oil layer of the BIO coating was utilized as a barrier to inhibit scale nucleation and reduce scale adhesion. The mechanical strength of the coating was optimized by regulating nanoparticle contents. Moreover, the universality of scale resistance was demonstrated by varying the types of nanoparticles, oils and scales. Compared with commercial pipeline materials, such as copper, this BIO coating significantly reduces scale deposition after 240-h scaling test(ca. 93% reduction). Therefore, this study designs scalable and robust organogel coatings for sustainable scale resistance, which may be used for practical application in oil production.  相似文献   

14.
Ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was employed to extract and purify wedelolactone and isodemethylwedelolactone from Ecliptae Herba. The operating conditions of ultra‐high‐pressure extraction were optimized using an orthogonal experimental design. The optimal conditions were 80% aqueous methanol solvent, 200 MPa pressure, 3 min extraction time and 1:20 (g/mL) solid–liquid ratio for extraction of wedelolactone and isodemethylwedelolactone. After extraction by ultra‐high pressure, the extraction solution was concentrated and subsequently extracted with ethyl acetate; a total of 2.1 g of crude sample was obtained from 100 g of Ecliptae Herba. A two‐phase solvent system composed of petroleum ether–ethyl acetate–methanol–water (3:7:5:5, v/v) was used for high‐speed counter‐current chromatography separation, by which 23.5 mg wedelolactone, 6.8 mg isodemethylwedelolactone and 5.5 mg luteolin with purities >95% were purified from 300 mg crude sample in a one‐step separation. This research demonstrated that ultra‐high‐pressure extraction combined with high‐speed counter‐current chromatography was an efficient technique for the extraction and purification of coumestans from plant material.  相似文献   

15.
《中国化学》2017,35(7):1079-1085
A series of form‐stable phase change materials (FSPCMs ) comprising paraffin as the latent heat storage material, diurea as the supporting material and base oil as the performance improvement agent were prepared. The diurea was synthesized in the system of paraffin/oil directly. A series of characterization was carried out for a deep understanding of shape stability and material properties of diurea‐FSPCMs . The results showed that paraffin and base oil were packaged in the three‐dimensional supra‐molecular structures network which was formed by diurea. The dropping point of the prepared FSPCMs could reach 256 °C and the oil separation rate was as low as 1.19% at 100 °C for 30 h. The results of thermal properties tests showed that the prepared FSPCMs exhibited excellent thermal stability and the FSPCMs remained solid‐like state in the temperature range from 25 to 200 °C. This study proposes a novel method to prepare high‐temperature non‐flowing FSPCMs composites and methods to detect the thermal stability and shape stability of FSPCMs , which is helpful in understanding the shape stability mechanism and broadening the potential application of FSPCMs .  相似文献   

16.
Nuclear magnetic resonance (NMR) techniques are widely used to identify pure substances and probe protein dynamics. Oil is a complex mixture composed of hydrocarbons, which have a wide range of molecular size distribution. Previous work show that empirical correlations of relaxation times and diffusion coefficients were found for simple alkane mixtures, and also the shape of the relaxation and diffusion distribution functions are related to the composition of the fluids. The 2D NMR is a promising qualitative evaluation method for oil composition. But uncertainty in the interpretation of crude oil indicated further study was required. In this research, the effect of each composition on relaxation distribution functions is analyzed in detail. We also suggest a new method for prediction of the rotational correlation time distribution of crude oil molecules using low field NMR (LF‐NMR) relaxation time distributions. A set of down‐hole NMR fluid analysis system is independently designed and developed for fluid measurement. We illustrate this with relaxation–relaxation correlation experiments and rotational correlation time distributions on a series of hydrocarbon mixtures that employ our laboratory‐designed downhole NMR fluid analyzer. The LF‐NMR is a useful tool for detecting oil composition and monitoring oil property changes. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

17.
In the present work, three polymeric surfactants were prepared and used as demulsifiers; polyalkyl phenol formaldehyde monoethanol amine ethoxylate, eo, 136(D1), polyalkyl phenol formaldehyde diethanol amine ethoxylate, eo, 37(D2) and polyalkyl phenol formaldehyde triethanol amine ethoxylate, eo, 21.5(D3). Their demulsification potency in breaking water‐in‐crude oil emulsions was investigated. In this respect, two naturally occurring Egyptian water‐in‐oil (w/o) emulsions, one of them was waxy and the other was asphaltenic, were used in order to study the demulsification power of these compounds. The data revealed that, the resolution of water from waxy crude emulsion was easier than asphaltenic crude emulsion. The demulsification efficiency increases with increasing demulsifier concentration, contact time and temperature. The interfacial tension (IFT) at the crude oil–water interface was measured, it was found that the concentration of demulsifiers required to cause a minimum IFT are always less than these indicating a maximum demulsification efficiency. All the results were discussed in relation to emulsifier chemical structure and crude oil composition. Copyright © 2002 John Wiley & Sons, Ltd.  相似文献   

18.
Recent research on microfluidic paper‐based analytical devices (μPADs) has shown that paper has great potential for the fabrication of low‐cost diagnostic devices for healthcare and environmental monitoring applications. Herein, electrochemiluminescence (ECL) was introduced for the first time into μPADs that were based on screen‐printed paper‐electrodes. To further perform high‐specificity, high‐performance, and high‐sensitivity ECL on μPADs for point‐of‐care testing (POCT), ECL immunoassay capabilities were introduced into a wax‐patterned 3D paper‐based ECL device, which was characterized by SEM, contact‐angle measurement, and electrochemical impedance spectroscopy. With the aid of a home‐made device‐holder, the ECL reaction was triggered at room temperature. By using a typical tris(bipyridine)ruthenium–tri‐n‐propylamine ECL system, this paper‐based ECL 3D immunodevice was applied to the diagnosis of carcinoembryonic antigens in real clinical serum samples. This contribution further expands the number of sensitive and specific detection modes of μPADs.  相似文献   

19.
Two kinds of bio‐resourced reactive diluents have been synthesized from linseed oil. The prepared epoxidized linseed oil (ELO) and the cyclocarbonated linseed oil (CLO) were separately blended with a petroleum‐based tetra‐functional epoxy resin (TGDDM) to improve its processability and to overcome the brittleness of the thermoset network therefrom. The linseed oil modifications were spectrally established, and processability improvement of the resin blends was rheologically confirmed. The curing of samples was studied by differential scanning calorimetry, and their mechanical properties (ie, tensile, flexural, fracture toughness, and adhesion) were investigated as well. Scanning electron microscopy images were obtained to reconfirm the toughness improvement of the modified thermosets. In contrast of the epoxidized soybean oil (ie, the most conventionally studied bio‐based reactive diluent), ELO and CLO had no negative effects on the thermoset material characteristics. They improved properties such as tensile strength (up to 43.2 MPa), fracture toughness (1.1 MPa m1/2), and peel‐adhesion strength (4.5 N/25 mm). It was concluded that ELO and CLO were efficient reactive diluents to be used in formulations of polymer composites, surface coatings, and structural adhesives based on epoxy resins.  相似文献   

20.
5‐Ethylidene‐2‐norbornene (ENB) has a potential application as part of a new generation of healing agents, owing to its rapid polymerization rate and wide liquid temperature range. In this study, we developed a new self‐healing system using ENB as the healing agent and methyl 5‐norbornene‐2‐carboxylate (MNC) as the adhesion promoter. Dynamic differential scanning calorimetry (DSC) was used to monitor cure behaviors of ENB with different MNC loadings, through which a series of cure temperatures were designed. The MNC loading and cure temperature had significant effects on the adhesion strength. The adhesion strength increased remarkably with MNC loadings of up to 10 wt % compared with ENB alone. The ENB monomer and the ENB/MNC mixture were successfully microencapsulated, and the resultant microcapsules were embedded into an epoxy resin along with Grubbs' catalyst for self‐healing efficiency measurements. Peak fracture loads for both healing agents showed maximal values at a low catalyst loading (0.3 wt %). In comparison with neat ENB, a significant improvement in healing efficiency was observed for the ENB/MNC mixture. © 2016 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2016 , 54, 1170–1179  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号