首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Chaos, control, anticontrol and synchronization of chaos for an autonomous rotational machine system with a hexagonal centrifugal governor and spring for which time-delay effect is considered are studied in the paper. By applying numerical results, phase diagram and power spectrum are presented to observe periodic and chaotic motions. Linear feedback control and adaptive control algorithm are used to control chaos effectively. Linear and nonlinear feedback synchronization and phase synchronization for the coupled systems are presented. Finally, anticontrol of chaos for this system is also studied.  相似文献   

2.
In this paper, we attempt to use the proportional-integral-derivative (PID) controller to achieve the chaos synchronization for delayed discrete chaotic systems. Three PID control gains can be optimally determined by means of using a novel optimization algorithm, called the particle swarm optimization (PSO). The algorithm is motivated from the organism behavior of fish schooling and bird flocking, and involves the social psychology principles in socio-cognition human agents and evolutionary computations. It has a good numerical convergence for solving optimization problem. To show the validity of the PSO-based PID control for chaos synchronization, several cases with different initial populations are considered and some simulation results are shown.  相似文献   

3.
We study the chaos control and the function projective synchronization of a fractional-order T-system and Lorenz chaotic system using the backstepping method. Based on stability theory, we consider the condition for the local stability of nonlinear three-dimensional commensurate fractional-order system. Using the feedback control method, we control the chaos in the considered fractional-order T-system. We simulate the function projective synchronization between the fractional-order T-system and Lorenz system numerically using MATLAB and depict the results with plots.  相似文献   

4.
Synchronization of Genesio chaotic system via backstepping approach   总被引:9,自引:0,他引:9  
Backstepping design is proposed for synchronization of Genesio chaotic system. Firstly, the control problem for the chaos synchronization of nominal Genesio systems without unknown parameters is considered. Next, an adaptive backstepping control law is derived to make the error signals between drive Genesio system and response Genesio system with an uncertain parameter asymptotically synchronized. Finally, the approach is extended to the synchronization problem for the system with three unknown parameters. The stability analysis in this article is proved by using a well-known Lyapunov stability theorem. Note that the approach provided here needs only a single controller to realize the synchronization. Two numerical simulations are presented to show the effectiveness of the proposed chaos synchronization scheme.  相似文献   

5.
As in many continuous synchronization studies and chaos-based communication systems, the paradigmatic chaos generator, Chua's circuit has been generally used in impulsive synchronization schemes. On the other hand, different versions of Chua's circuit are considered in literature. Nowadays, we realized a new version of Chua's circuit by modifying circuit connections and inserting an additional passive element to the circuit structure. In this study, we have experimentally investigated impulsive synchronization between two modified Chua's circuits. Experimental results show that impulsive synchronization is achieved in the proposed scheme with respect to the switching frequency.  相似文献   

6.
In this paper, the dynamics and synchronization of improved Colpitts oscillators designed to operate in ultrahigh frequency range are considered. The model is described by a continuous time four-dimensional autonomous system with an exponential nonlinearity. The system is integrated numerically and various bifurcation diagrams and corresponding graphs of largest 1D Lyapunov exponent are plotted to summarize different scenarios leading to chaos. It is found that the oscillator moves from the state of fixed point motion to chaos via the usual paths of period-doubling, intermittency and interior crisis routes when monitoring the bias (i.e. power supply) in tiny ranges. In order to promote chaos-based synchronization designs of this type of oscillators, a synchronization strategy based upon the design of a nonlinear state observer is successfully adapted. The suggested approach enables synchronization to be achieved via a scalar transmitted signal which represents a suitable feature for communication applications. Numerical simulations are performed to demonstrate the effectiveness and feasibility of the proposed technique.  相似文献   

7.
This paper proposes a backstepping method to resolve the synchronization of discrete-time chaotic systems. The proposed scheme offers systematic design method for the synchronization of a class of discrete-time hyper-chaotic systems, which implies much complicated high-order chaotic systems can be used to improve the security in chaos communications. A well-known chaotic systems: generalized Henon map is considered as illustrative example to demonstrate the general applicability of backstepping design. Numerical simulations verify the effectiveness of the approach.  相似文献   

8.
This work presents chaos synchronization between two different chaotic systems by using active control. This technique is applied to achieve chaos synchronization for each pair of the dynamical systems Lorenz, Lü and Chen. Numerical simulations are shown to verify the results.  相似文献   

9.
In this paper, chaos in a fractional-order neural network system with varying time delays is presented, and chaotic synchronization system with varying time delays is constructed. The stability of constructed synchronization system is analyzed by Laplace transformation theory. In addition, the bifurcation graph of the chaotic system is illustrated. The study results show that the chaos in such fractional-order neural networks with varying time delay can be synchronized, and Washout filter control can be used to reduce the range of coupled parameter.  相似文献   

10.
This work presents chaos synchronization between two different chaotic systems by using active control. This technique is applied to achieve chaos synchronization for a new system and each of the dynamical systems Lorenz, Chen and Lü. Numerical simulations are also shown to verify the results.  相似文献   

11.
This paper investigates the robust chaos synchronization problem for the four-dimensional energy resource systems. Based on the sliding mode control (SMC) technique, this approach only uses a single controller to achieve chaos synchronization, which reduces the cost and complexity for synchronization control implementation. As expected, the error states can be driven to zero or into predictable bounds for matched and unmatched perturbations, respectively. Numerical simulation results, which fully coincide with theoretical results, are presented to demonstrate the obtained results.  相似文献   

12.
The synchronization of two different chaotic oscillators is studied, based on an open-loop control – the entrainment control. We consider two types of synchronization: complete synchronization and effectively complete synchronization. The sufficient conditions that two different systems can be synchronized by this method is discussed. Furthermore, a hierarchical idea to synchronize multiple chaotic subsystems is proposed.  相似文献   

13.
Chaotic systems without equilibrium points represent an almost unexplored field of research, since they can have neither homoclinic nor heteroclinic orbits and the Shilnikov method cannot be used to demonstrate the presence of chaos. In this paper a new fractional-order chaotic system with no equilibrium points is presented. The proposed system can be considered “elegant” in the sense given by Sprott, since the corresponding system equations contain very few terms and the system parameters have a minimum of digits. When the system order is as low as 2.94, the dynamic behavior is analyzed using the predictor–corrector algorithm and the presence of chaos in the absence of equilibria is validated by applying three different methods. Finally, an example of observer-based synchronization applied to the proposed chaotic fractional-order system is illustrated.  相似文献   

14.
In this paper, based on the stability theorem of linear fractional systems, a necessary condition is given to check the chaos synchronization of fractional systems with incommensurate order. Chaos synchronization is studied by utilizing the Pecora–Carroll (PC) method and the coupling method. The necessary condition can also be used as a tool to confirm results of a numerical simulation. Numerical simulation results show the effectiveness of the necessary condition.  相似文献   

15.
This paper deals with the finite-time chaos synchronization of the unified chaotic system with uncertain parameters. Based on the finite-time stability theory, a control law is proposed to realize finite-time chaos synchronization for the unified chaotic system with uncertain parameters. The controller is simple, robust and only part parameters are required to be bounded. Simulation results for the Lorenz, Lü and Chen chaotic systems are presented to validate the design and the analysis.  相似文献   

16.
Tama?evi?ius et al. proposed a simple 3D chaotic oscillator for educational purpose. In fact the oscillator can be implemented very easily and it shows typical bifurcation scenario so that it is a suitable training object for introductory education for students. However, as far as we know, no concrete studies on bifurcations or applications on this oscillator have been investigated. In this paper, we make a thorough investigation on local bifurcations of periodic solutions in this oscillator by using a shooting method. Based on results of the analysis, we study chaos synchronization phenomena in diffusively coupled oscillators. Both bifurcation sets of periodic solutions and parameter regions of in-phase synchronized solutions are revealed. An experimental laboratory of chaos synchronization is also demonstrated.  相似文献   

17.
This paper investigates the synchronization of three dimensional chaotic systems by extending our previous method for chaos stabilization, and proposes a novel simple adaptive feedback controller for chaos synchronization. In comparison with previous methods, the present controller contains single state feedback. To our knowledge, the above controller is the simplest control scheme for synchronizing the three dimensional chaotic systems. The results are validated using numerical simulations.  相似文献   

18.
This paper deals with chaos synchronization for master slave piecewise linear systems. The synchronization problem is formulated as a global stability problem of error synchronization dynamics. New sufficient conditions are provided using a Lyapunov approach and the so-called S-procedure. We show that the synchronization problem can be solved as an optimization problem subject to a set of Linear Matrix Inequalities (LMI) for which a state feedback controller is designed efficiently. The effectiveness of the proposed solution is verified via simulation results using the original Chua’s circuit model. Furthermore, it will be proven that the new sufficient conditions relaxed the conservatism of previous existing works.  相似文献   

19.
This paper investigates projective lag synchronization of spatiotemporal chaos with disturbances. A control scheme is designed via active sliding mode control. The synchronization of spatiotemporal chaos between a drive system and a response system with disturbances and time-delay is implemented by adding the active sliding mode controllers. The control law is applied to two identical spatiotemporal Gray-Scott systems. Numerical results demonstrate the feasibility and the effectiveness of the proposed approach.  相似文献   

20.
Chaos synchronization, as an important topic, has become an active research subject in nonlinear science. Over the past two decades, chaos synchronization between nonlinear systems has been extensively studied, and many types of synchronization have been announced. This paper introduces another novel type of chaos synchronization – full state hybrid projective synchronization (FSHPS), which includes complete synchronization, anti-synchronization and projective synchronization as its special item. Based on the Lyapunov’s direct method, the general FSHPS scheme is given and illustrated with Lorenz chaotic system and hyperchaotic Chen system as examples. Numerical simulations are used to verify the effectiveness of the proposed scheme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号