首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Engineering design‐based STEM integration is one potential model to help students integrate content and practices from all of the STEM disciplines. In this study, we explored the intersection of two aspects of pre‐college STEM education: the integration of the STEM disciplines, and the NGSS practice of engaging in argument from evidence within engineering. Specifically, our research question was: While generating and justifying solutions to engineering design problems in engineering design‐based STEM integration units, what STEM content do elementary and middle school students discuss? We used naturalistic inquiry to analyze student team audio recordings from seven curricular units in order to identify the variety of STEM content present as students justified their design ideas and decisions (i.e., used evidence‐based reasoning). Within the four disciplines, fifteen STEM content categories emerged. Particularly interesting were the science and mathematics categories. All seven student teams used unit‐based science, and five used unit‐based mathematics, to support their design ideas. Five teams also applied science and/or mathematics content that was outside the scope of the units' learning objectives. Our results demonstrate that students integrated content from all four STEM disciplines when justifying engineering design ideas and solutions, thus supporting engineering design‐based STEM integration as a curricular model.  相似文献   

2.
“As the world becomes increasingly technological, the value of (the ideas and skills of its population) will be determined in no small measure by the effectiveness of science, technology, engineering, and mathematics (STEM) education in the United States” and “STEM education will determine whether the United States will remain a leader among nations and whether we will be able to solve immense challenges in such areas as energy, health, environmental protection, and national security” (President's Council of Advisors on Science and Technology, 2010, p. vii). Research on the effectiveness of STEM‐focused school and other learning experiences (e.g., short‐term camps) on student attitudes and performance outcomes is sparse. In this study, we documented the influence of an intensive STEM summer program on high school students’ attitudes toward STEM concepts and interests in STEM careers. Attending the summer program was associated with gains on students’ attitudes toward some aspects of STEM as well as specific career interests. Notably, students reported statistically significant views of important aspects of STEM and their attitudes toward science and mathematics were more positive than their attitudes about engineering and technology.  相似文献   

3.
In theory, STEM (interdisciplinary science, technology, engineering and mathematics) is cross‐disciplinary and situated in real‐world problem‐solving contexts. In practice, STEM disciplines are often implemented separately using contrived contexts. This paper examines theoretical and empirical aspects of Montessori middle school science in the United States, and its alignment with the conceptual framework of integrated STEM. We selected Montessori adolescent environments because the Montessori philosophy involves interdisciplinary application contextualized in purposeful work and learning. Our research sought to investigate how Montessori middle schools have designed their science programs, and to situate these findings within the current landscape of STEM education and reform‐based science. Based on the results of our survey of 96 U.S. Montessori middle schools, we argue Montessori offers an integrated educational approach that meaningfully situates academic disciplines to mirror local and global challenges, well supported by theory and literature on STEM and situated learning theories. We assert that integrated STEM happens organically in many Montessori middle schools, and takes place through authentic work in communities of practice. Our research communicates the value of looking outside traditional school settings to examine alternative formal education spaces, like Montessori classrooms where integrated STEM happens organically.  相似文献   

4.
This article reports findings from a study of an integrated science, technology, engineering, and mathematics (STEM) education program on student interest and awareness in science and engineering. The analysis features grade 3–5 students from a high-poverty, urban school system in the Mid-Atlantic region. Through the quantitative analysis of closed ended survey responses and the qualitative analysis of an open-ended query, we describe how the adoption of an intensive STEM-focused partnership could influence students’ early interest in and awareness of science and engineering as disciplines and careers. The analysis of the student responses revealed that after 1 year of the project, the students enrolled in the program demonstrated developing interest in science and engineering and were better able to articulate a greater understanding of engineering as a discipline. These findings have implications for the effectiveness of an integrated STEM approach for upper elementary students participating and succeeding in the STEM fields.  相似文献   

5.
The new standards for K–12 science education suggest that student learning should be more integrated and should focus on crosscutting concepts and core ideas from the areas of physical science, life science, Earth/space science, and engineering/technology. This paper describes large‐scale, urban elementary‐focused science, technology, engineering, and mathematics (STEM) collaboration between a large urban school district, various STEM‐focused community stakeholders, and a research‐focused private university. The collaboration includes the development of an integrated STEM curriculum for grade K–5 with accompanying teacher professional development. This mixed‐methodology study describes findings from focus group interviews and a survey of teachers from Title I elementary schools. Findings suggest the importance of the following critical features of professional development: (a) coherence, (b) content focus, (c) active learning, (d) collective participation, and (e) duration to the success of large‐scale STEM urban elementary school reform  相似文献   

6.
Of the four subjects in an integrated science, technology, engineering, and mathematics (STEM) approach, mathematics has not received enough focus. This could be in part because mathematics teachers may be apprehensive or unsure about how to implement integrated STEM education in their classrooms. There are benefits to integrated STEM in a mathematics classroom though, including increased motivation, interest, and achievement for students. This article discusses three methods that middle school mathematics teachers can utilize to integrate STEM subjects. By focusing on open‐ended problems through engineering design challenges, mathematical modeling, and mathematics integrated with technology middle school students are more likely to see mathematics as relevant and valuable. Important considerations are discussed as well as recent research with these approaches.  相似文献   

7.
The purpose of this study was to develop, scale, and validate assessments in engineering, science, and mathematics with grade appropriate items that were sensitive to the curriculum developed by teachers. The use of item response theory to assess item functioning was a focus of the study. The work is part of a larger project focused on increasing student learning in science, technology, engineering, and mathematics (STEM)‐related areas in grades 4–8 through an engineering design‐based, integrated approach to STEM instruction and assessment. The fact that the assessments are available to school districts at no cost, and represent psychometrically sound instruments that are sensitive to STEM‐oriented curriculum, offers schools an important tool for gauging students' understanding of engineering, science, and mathematics concepts.  相似文献   

8.
The purpose of this study is to compare students’ mathematics achievement growth rate in Texas science, technology, engineering, and mathematics (T‐STEM) academies to students’ mathematics achievement growth rate in traditional public high schools. Forty‐six schools, 23 of which were T‐STEM academies and 23 of which were matched non‐STEM schools, were included in this study. A hierarchical linear modeling method was conducted. The result of the present study revealed that there was no difference in students’ mathematics achievement growth rate in T‐STEM academies compared to students’ mathematics achievement growth rate in comparison schools. However, in terms of ethnicity, the results indicated that African American and Hispanic students in T‐STEM academies outperformed African American and Hispanic students in comparison schools on their mathematics growth rate.  相似文献   

9.
Objective: In this study, we investigated the implementation of project‐based learning (PBL) activities in four secondary science, technology, engineering, and mathematics (STEM) education settings to examine the impact of inquiry based instructional practices on student learning. Method: Direct classroom observations were conducted during the 2013–2014 school year in STEM Traditional Courses, a STEM Platform School, an Engineering Optional Program (EOP), and a Virtual STEM Academy (VSA) to measure teacher instructional practices (School Observation Measure) and student engagement (The Rubric for Student‐Centered Activities). Results: The four approaches to STEM education showed significant differences in their implementation of PBL, with the EOP and VSA having higher incidences of PBL activities. Additionally, higher‐level questioning strategies, higher‐order instructional feedback, and integration of STEM subject areas was absent or rarely observed. Conclusions: Components of PBL are missing in STEM education, in traditional and non‐traditional STEM courses. In‐service teachers may benefit from professional development that enhances their understanding of PBL activities to maximize student learning opportunities.  相似文献   

10.
It is a well‐known fact that, in general, many students have a lack of interest and proficiency in mathematics and science. Therefore, it is imperative that we prepare and inspire all students, specifically students of underrepresented populations, to learn science, technology, engineering, and mathematics (STEM) content. Now in its fourth year, See Blue STEM Camp was created in order to expose middle‐level students to a variety of STEM fields and STEM professionals through hands‐on project‐based learning experiences in order to increase their interest in STEM. This paper describes the structure and the activities of the camp. In this innovative project, we utilized an embedded mixed methods study design to investigate the extent middle level students' attitudes, perceptions, and interest in and toward STEM fields and careers changed after participating in an informal learning environment of a five‐day day camp held on the campus of a major university in the mid‐south. The results revealed an increase in their motivation and interest in STEM fields; in fact, there was 3% increase from pre to post in interest in STEM careers. The data also revealed that a majority of the participating middle school students found the STEM content sessions “fun” and engaging, specifically citing the hands‐on experiences they received.  相似文献   

11.
There is a need for more students to be interested in science, technology, engineering, and mathematics (STEM) careers to advance U.S. competitiveness and economic growth. A consensus exists that improving STEM education is necessary for motivating more students to pursue STEM careers. In this study, a survey to measure student (grades 4–6) attitudes toward STEM and STEM careers was developed and administered to 662 students from two STEM‐focused and three comprehensive (non‐STEM‐focused) schools. Cronbach's alphas for the whole survey and subscales indicated a high internal consistency. Statistically significant difference in means between students attending the STEM‐focused and comprehensive schools on the two subscales of the survey and the overall survey were found. However, the explained variance for these results was approximately 1%. The survey is a useful tool to assess efficacy of STEM education programs on student attitudes toward STEM and STEM careers.  相似文献   

12.
Increasingly, STEM focused high schools are used prepare students for college STEM majors and launch them into STEM careers. Yet a new focus on STEM education at the elementary levels suggests that the importance of STEM education is much broader than a preparation for workforce needs in high school or college. This paper describes a case study designed to articulate the mission and design of an effective and nationally recognized STEM‐focused elementary school. As described through the six most impactful components of STEM‐focused elementary school design at Walter Bracken STEAM Academy, the case study emphasizes the school's strong and inclusive school leadership, with staff organized into grade level groups empowered to innovate and honing their teaching practices. External partnerships are leveraged to broaden student learning opportunities. Students at Bracken engage in active learning opportunities and multidisciplinary lessons where STEM is used as a way of thinking and as a way to coherently combine content into active learning opportunities that are engaging for learners. By organizing the structural components of an exemplary STEM‐focused elementary school, we hope to deliver actionable reforms for elementary schools wanting to increase their STEM‐focused offerings.  相似文献   

13.
Although science, technology, engineering, and mathematics (STEM) education sits at the center of a national conversation, comparatively little attention has been given to growing need for STEM teacher preparation, particularly at the elementary level. This study analyzes the outcomes of a novel, preservice STEM teacher education model. Building on both general and STEM‐specific teacher preparation principles, this program combined two traditional mathematics and science methods courses into one STEM block. Analysis compared preservice teachers in the traditional courses with those enrolled in the STEM block, investigating STEM teaching efficacy, reported and exhibited pedagogical practices, and STEM literacies using a pre‐post survey as well as analysis of lesson planning products. Linear regression models indicated that substantial growth was seen in both approaches but STEM block preservice teachers reported significantly greater gains in STEM teaching efficacy as compared with traditional‐route teachers. Lesson planning artifacts also demonstrated increased facilitation of STEM literacies, with specific attention to content integration, engineering and design, and arts inclusion. Technology and computational thinking emerged as areas for further growth and clarification in STEM teacher education models. Findings contribute to a growing research base on developing the STEM teacher workforce.  相似文献   

14.
The Science, Engineering, and Technology Gateway of Ohio (SETGO) program has a three‐pronged approach to meeting the needs at different levels of students in the science, technology, engineering, and mathematics (STEM) pipeline. The SETGO program was an extensive collaboration between a two‐year community college and a nearby four‐year institution. Two of these approaches, the STEM Summer Research Program and Owens Ready Bridge, have been found to be effective in significantly increasing participants' beliefs and attitudes for both males and females. Participants cite integrative learning activities, mentoring, and small group interactions as some reasons for their growth. This study utilized a mixed‐method approach to better understand the reasons for participant and program success. After five years of evaluation of the SETGO program, findings suggest that students feel more confident not only in their preparation for the rigors of a STEM degree, but also in their decisions to complete the degree.  相似文献   

15.
School STEM Culture—an aspect of culture within a school community—is defined as the beliefs, values, practices, and resources in STEM fields as perceived by students, parents, teachers, and administrators and counselors within a school. This study validates the STEM Culture Assessment Tool (STEM‐CAT), an instrument intended to advance the use of the School STEM Culture construct within the research community. Internal consistency was determined through the use of Cronbach's alpha and factor analyses, and the instrument was found to be a reliable measure of School STEM Culture. The instrument can be used in future research to quantify School STEM Culture to determine if interventions change the culture of a school to further STEM education.  相似文献   

16.
Young children are capable of engaging in STEM investigations when they are guided by skilled and knowledgeable teachers. However, many elementary teachers may lack sufficient STEM content knowledge and report feeling unprepared to teach STEM content. Two university faculty members in mathematics and science education, worked to cultivate and advance two designated Elementary STEM‐Focused professional development schools through a two year series of an after‐school STEM professional development (PD) Program. As the STEM PD Program progressed, it became evident that teachers were interested in and needed more experiences with the elements of the engineering process for young learners. With this in mind, several of the PD sessions were designed to highlight the engineering process and allow teachers to experience various activities that would engage young learners. To examine how this focus on the engineering process impacted the teachers in this STEM PD Program, a research study was organized during year two of the STEM PD Program. The results of this study provide evidence that this program had a positive influence on the teacher participants’ engineering teacher efficacy and implementation of engineering lessons and activities within their classrooms.  相似文献   

17.
With ongoing underrepresentation of women in STEM fields, it is necessary to explore ways to maintain girls' STEM interest throughout elementary and middle school. This study is situated within the context of Designs in STEM (pseudonym), an out-of-school program that engages urban youth in authentic STEM experiences. Participants were 30 girls attending Designs in STEM in grades four and five. Participants were interviewed about their STEM interest, out-of-school versus in-school STEM learning experiences, and how gender relates to STEM success. Several key findings emerged. First, although students' prior school experiences with mathematics resulted in less positive dispositions toward mathematics than other STEM disciplines, their experiences at Designs in STEM revealed that mathematics could be fun and valuable when used for real-world purposes. Second, students found Designs in STEM to be more engaging and inspiring due to the context and pedagogies employed by Designs in STEM instructors. Third, despite observing girls' behavior that was more aligned with academic success, participants still identified STEM advantages for boys. Finally, participants defined success and intelligence in STEM based on speed and tracking. Discussion focuses on the need to consider how school-based mathematics instruction may serve as a barrier to girls' STEM interest and involvement.  相似文献   

18.
Problem-based learning (PBL) and science, technology, engineering, and mathematics (STEM) are two acronyms widely visible in education literature today. However, few studies have explored these in connection with one another, specifically with regard to teacher preparation. This study investigated how 47 prospective elementary teachers developed PBL units and how they integrated STEM and other disciplines into those units. It also addressed the affordances and constraints of integrated STEM as perceived by the prospective elementary teachers. Data sources in this multimethod study included PBL units and interviews. Findings revealed that all of the units integrated at least two of the STEM disciplines, as well as literacy, in a variety of ways. The prospective teachers articulated perceived benefits of integrated STEM, such as: making connections across content areas, preparing students for the real world, teaching students that failure is not a bad thing, and providing future opportunities. They also addressed perceived barriers of integrated STEM, such as: having limited experience with the content, diminishing the effect of individual content areas, and needing better curriculum alignment. Overall, this study provides evidence that PBL can be a pedagogical approach to integrate STEM. Implications for teachers, teacher educators, and curriculum specialists are discussed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号