首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2236篇
  免费   61篇
  国内免费   14篇
化学   1554篇
晶体学   21篇
力学   54篇
数学   239篇
物理学   443篇
  2021年   21篇
  2020年   38篇
  2019年   22篇
  2018年   21篇
  2017年   17篇
  2016年   40篇
  2015年   48篇
  2014年   39篇
  2013年   105篇
  2012年   109篇
  2011年   168篇
  2010年   83篇
  2009年   77篇
  2008年   167篇
  2007年   126篇
  2006年   154篇
  2005年   143篇
  2004年   89篇
  2003年   84篇
  2002年   60篇
  2001年   20篇
  2000年   33篇
  1999年   24篇
  1998年   22篇
  1997年   15篇
  1996年   29篇
  1995年   14篇
  1994年   19篇
  1993年   36篇
  1992年   18篇
  1991年   13篇
  1990年   17篇
  1989年   17篇
  1988年   20篇
  1987年   20篇
  1986年   14篇
  1985年   21篇
  1984年   17篇
  1983年   17篇
  1982年   18篇
  1981年   16篇
  1980年   15篇
  1979年   28篇
  1978年   16篇
  1977年   14篇
  1976年   13篇
  1974年   12篇
  1973年   17篇
  1967年   9篇
  1966年   7篇
排序方式: 共有2311条查询结果,搜索用时 49 毫秒
1.
The effect of donor (D)–acceptor (A) alignment on the materials electronic structure was probed for the first time using novel purely organic porous crystalline materials with covalently bound two- and three-dimensional acceptors. The first studies towards estimation of charge transfer rates as a function of acceptor stacking are in line with the experimentally observed drastic, eight-fold conductivity enhancement. The first evaluation of redox behavior of buckyball- or tetracyanoquinodimethane-integrated crystalline was conducted. In parallel with tailoring the D-A alignment responsible for “static” changes in materials properties, an external stimulus was applied for “dynamic” control of the electronic profiles. Overall, the presented D–A strategic design, with stimuli-controlled electronic behavior, redox activity, and modularity could be used as a blueprint for the development of electroactive and conductive multidimensional and multifunctional crystalline porous materials.  相似文献   
2.
Tunneled metal oxides such as α-Mn8O16 (hollandite) have proven to be compelling candidates for charge-storage materials in high-density batteries. In particular, the tunnels can support one-dimensional chains of K+ ions (which act as structure-stabilizing dopants) and H2O molecules, as these chains are favored by strong H-bonds and electrostatic interactions. In this work, we examine the role of water molecules in enhancing the stability of K+-doped α-Mn8O16 (cryptomelane). The combined experimental and theoretical analyses show that for high enough concentrations of water and tunnel-ions, H2O displaces K+ ions from their natural binding sites. This displacement becomes energetically favorable due to the formation of K2+ dimers, thereby modifying the stoichiometric charge of the system. These findings have potentially significant technological implications for the consideration of cryptomelane as a Li+/Na+ battery electrode. Our work establishes the functional role of water in altering the energetics and structural properties of cryptomelane, an observation that has frequently been overlooked in previous studies.

Water displaces potassium ions and initiates the formation of a homonuclear dimer ion (K2+) in the tunnels of hollandite.  相似文献   
3.
In previous work we observed two simultaneous transitions in high molecular weight (MW) free‐standing polystyrene films that were interpreted as two thickness‐dependent reduced glass transition temperatures (Tgs). The weaker lower transition agreed well with the MW‐dependent Tg(h) previously reported, while the much stronger upper transition matched the MW‐independent Tg(h) previously observed in low‐MW free‐standing films. Here, we investigate the nature of these two transitions by inspecting the temperature dependence of the films' thermal coefficient of expansion (TCE) and present physical aging measurements using ellipsometry both below and in‐between the two transitions. TCE values indicate approximately 80 to 90% of the film solidifies at the upper transition, while only 10 to 20% remains mobile to lower temperatures, freezing out at the lower transition. Physical aging is observed at a temperature below the upper transition, but above the lower transition, indicative of the upper transition being an actual glass transition associated with the α‐relaxation. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2015 , 53, 64–75  相似文献   
4.
Homogenous amphiphilic crosslinked polymer films comprising of poly(ethylene oxide) and polysiloxane were synthesized utilizing thiol‐ene “ click ” photochemistry. A systematic variation in polymer composition was Carried out to obtain high quality films with varied amount of siloxane and poly(ethylene oxide). These films showed improved gas separation performance with high gas permeabilities with good CO2/N2 selectivity. Furthermore, the resulting films were also tested for its biocompatibility, as a carrier media which allow human adult mesenchymal stem cells to retain their capacity for osteoblastic differentiation after transplantation. The obtained crosslinked films were characterized using differential scanning calorimetry, dynamic mechanical analysis, thermogravimetric analysis, FTIR, Raman‐IR , and small angle X‐ray scattering. The synthesis ease and commercial availability of the starting materials suggests that these new crosslinked polymer networks could find applications in wide range of applications. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1548–1557  相似文献   
5.
Solution-based, anionic doping represents a convenient strategy with which to improve upon the conductivity of candidate anode materials such as Li4Ti5O12 (LTO). As such, novel synthetic hydrothermally-inspired protocols have primarily been devised herein, aimed at the large-scale production of unique halogen-doped, micron-scale, three-dimensional, hierarchical LTO flower-like motifs. Although fluorine (F) doping has been explored, the use of chlorine (Cl) dopants is the primary focus here. Several experimental variables, such as dopant amount, lithium hydroxide concentration, and titanium butoxide purity, were probed and perfected. Furthermore, the Cl doping process did not damage the intrinsic LTO morphology. The analysis, based on interpreting a compilation of SEM, XRD, XPS, and TEM-EDS results, was used to determine an optimized dopant concentration of Cl. Electrochemical tests demonstrated an increased capacity via cycling of 12 % for a Cl-doped sample as compared with pristine LTO. Moreover, the Cl-doped LTO sample described in this study exhibited the highest discharge capacity yet reported at an observed rate of 2C for this material at 143mAh g−1. Overall, these data suggest that the Cl dopant likely enhances not only the ion transport capabilities, but also the overall electrical conductivity of our as-prepared structures. To help explain these favorable findings, theoretical DFT calculations were used to postulate that the electronic conductivity and Li diffusion were likely improved by the presence of increased Ti3+ ion concentration coupled with widening of the Li migration channel.  相似文献   
6.
Statistical Inference for Stochastic Processes - Given a low frequency sample of an infinitely divisible moving average random field $$\{\int _{\mathbb {R}^d} f(x-t)\varLambda (dx); \ t \in \mathbb...  相似文献   
7.
8.
The CXCR4 chemokine receptor is implicated in a number of diseases including HIV infection and cancer development and metastasis. Previous studies have demonstrated that configurationally restricted bis‐tetraazamacrocyclic metal complexes are high‐affinity CXCR4 antagonists. Here, we present the synthesis of Cu2+ and Zn2+ acetate complexes of six cross‐bridged tetraazamacrocycles to mimic their coordination interaction with the aspartate side chains known to bind them to CXCR4. X‐ray crystal structures for three new Cu2+ acetate complexes and two new Zn2+ acetate complexes demonstrate metal‐ion‐dependent differences in the mode of binding the acetate ligand concomitantly with the requisite cis‐V‐configured cross‐bridged tetraazamacrocyle. Concurrent density functional theory molecular modelling studies produced an energetic rationale for the unexpected [Zn(OAc)(H2O)]+ coordination motif present in all of the Zn2+ cross‐bridged tetraazamacrocycle crystal structures, which differs from the chelating acetate [Zn(OAc)]+ structures of known unbridged and side‐bridged tetraazamacrocyclic Zn2+‐containing CXCR4 antagonists.  相似文献   
9.
Hexakis‐substituted [60]fullerene adducts with icosahedral symmetry provide an unprecedented scaffold for the spatial arrangement of twelve functional groups with high geometric precision. This unique molecular symmetry identifies such polyfunctional organic building blocks as potential highly connective linkers for coordination polymer and metal–organic framework synthesis. Hereby, the linker exhibits a higher connectivity than the metal ions and with the main connectivity based on the ligand, this can create a new type of inversely cross‐linked framework. Two hexakis adducts bearing either twelve glycolic acid or 3‐hydroxypropionic acid side chains attached to its malonate units were incorporated as organic connectivity centers in the first fullerene‐containing three‐dimensional frameworks by coordination with Zn2+.  相似文献   
10.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号