首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 26 毫秒
1.
Let $A$, $B$ be unital $\[{C^*}\]$-algebras. $\[{\chi _A} = \{ \varphi |\varphi \]$ are all completely postive linear maps from $\[{M_n}(C)\]$ to $A$ with $\[\left\| {a(\varphi )} \right\| \le 1\]$ $}$. $\[(a(\varphi ) = \left( {\begin{array}{*{20}{c}} {\varphi ({e_{11}})}& \cdots &{\varphi ({e_{1n}})}\{}& \cdots &{}\{\varphi ({e_{n1}})}& \cdots &{\varphi ({e_{nn}})} \end{array}} \right),\]$ where $\[\{ {e_{ij}}\} \]$ is the matrix unit of $\[{M_n}(C)\]$. Let $\[\alpha \]$ be the natural action of $\[SU(n)\]$ on $\[{M_n}(C)\]$ For $\[n \ge 3\]$, if $\[\Phi \]$ is an $\[\alpha \]$-invariant affine isomorphism between $\[{\chi _A}\]$ and $\[{\chi _B}\]$, $\[\Phi (0) = 0\]$, then $A$ and $B$ are $\[^*\]$-isomorphic In this paper a counter example is given for the case $\[n = 2\]$.  相似文献   

2.
Let S~* be the class of functionsf(z)analytic,univalent in the unit disk|z|<1 andmap|z|<1 onto a region which is starlike with respect to w=0 and is denoted as D_f.Letr_0=r_0(f)be the radius of convexity of f(2).In this note,the author proves the following result:(d_0/d~*)≥0.4101492,where d_0= f(z),d~*=|β|.  相似文献   

3.
Based on [3] and [4],the authors study strong convergence rate of the k_n-NNdensity estimate f_n(x)of the population density f(x),proposed in [1].f(x)>0 and fsatisfies λ-condition at x(0<λ≤2),then for properly chosen k_nlim sup(n/(logn)~(λ/(1 2λ))丨_n(x)-f(x)丨C a.s.If f satisfies λ-condition,then for propeoly chosen k_nlim sup(n/(logn)~(λ/(1 3λ)丨_n(x)-f(x)丨C a.s.,where C is a constant.An order to which the convergence rate of 丨_n(x)-f(x)丨andsup 丨_n(x)-f(x)丨 cannot reach is also proposed.  相似文献   

4.
The paper proves on the basis of [1] the following theorem: Let $\[f(z)\]$ be an entire function of lower order $\[\mu < \infty \]$, and $\[{a_i}(z)(l = 1,2, \cdots ,k)\]$ be meromorphic functions which satisfy $\[T(r,{a_i}(z)) = o\{ T(r,f)\} \]$. If $$\[\sum\limits_{i = 1}^k {\delta ({a_i}(z),f) = 1\begin{array}{*{20}{c}} {({a_i}(z) \ne \infty )}&{(1)} \end{array}} \]$$ then the deficiencies $\[\delta ({a_i}(z),f)\]$ are equal to $\[\frac{{{n_1}}}{\mu }\]$, where $\[{n_i}\]$ is an integer,$\[l = 1,2, \cdots ,k\]$.  相似文献   

5.
In this paper,, the author proves the following result: Let $\[{E_{a,k}}(N)\]$ denote the number of natural numbers $\[n \le N\]$ for which equation $$\[\sum\limits_{i = 0}^k {\frac{1}{{{x_i}}}} = \frac{a}{n}\]$$ is insolable in positive integers $\[{x_i}(i = 0,1, \cdots ,k)\]$.Then $$\[{E_{a,k}}(N) \ll N\exp \{ - C{(\log N)^{1 - \frac{1}{{k + 1}}}}\} \]$$ where the implied constant depends on a and K.  相似文献   

6.
In this paper, the author proves the following resu: It Let K be a skew field and A be an automorphism of SL(2, K). Then there exists A∈GL(2, K), an automorphism σ or an anti-automorphism τ of K, such that A is of theform AX=AX~σA~(-1) for all X∈SL(2, K)or AX=A(X~τ~2)~(-1)A~(-1) for all X∈SL(2, K),where X~σ, X~τ are the matrices obtained by applying σ, τ on X respee tively and X' is thetranspose of X.  相似文献   

7.
In this paper the author proves a new fundamental lemma of Hardy-Lebesgne class $\[{H^2}(\sigma )\]$ and by this lemma obtains some fundamental results of exponential stability of $\[{C_0}\]$-semigroup of bounded linear operators in Banach spaces. Specially, if $\[{\omega _s} = \sup \{ {\mathop{\rm Re}\nolimits} \lambda ;\lambda \in \sigma (A) < 0\} \]$ and $\[\sup \{ \left\| {{{(\lambda - A)}^{ - 1}}} \right\|;{\mathop{\rm Re}\nolimits} \lambda \ge \sigma \} < \infty \]$ , where \[\sigma \in ({\omega _s},0)\]) and A is the infinitesimal generator of a $\[{C_0}\]$-semigroup in a Banach space $X$, then $\[(a)\int_0^\infty {{e^{ - \sigma t}}\left| {f({e^{tA}}x)} \right|} dt < \infty \]$, $\[\forall f \in {X^*},x \in X\]$; (b) there exists $\[M > 0\]$ such that $\[\left\| {{e^{tA}}x} \right\| \le N{e^{\sigma t}}\left\| {Ax} \right\|\]$, $\[\forall x \in D(A)\]$; (c) there exists a Banach space $\[\hat X \supset X\]$ such that $\[\left\| {{e^{tA}}x} \right\|\hat x \le {e^{\sigma t}}\left\| x \right\|\hat x,\forall x \in X.\]$.  相似文献   

8.
Consider the discrete exponential family written in the form P_θ(X=x)=h(x)β(θ)θ~x,x=0,1,2,…,where h(x)>0,x=0,1,2,…,The prior distribution of θ belongs to thefa  相似文献   

9.
The paper considers the random L-Dirichlet seriesf(s,ω)=sum from n=1 to ∞ P_n(s,ω)exp(-λ_ns)and the random B-Dirichlet seriesψτ_0(s,ω)=sum from n=1 to ∞ P_n(σ iτ_0,ω)exp(-λ_ns),where {λ_n} is a sequence of positive numbers tending strictly monotonically to infinity, τ_0∈R is a fixed real number, andP_n(s,ω)=sum from j=1 to m_n ε_(nj)a_(nj)s~ja random complex polynomial of order m_n, with {ε_(nj)} denoting a Rademacher sequence and {a_(nj)} a sequence of complex constants. It is shown here that under certain very general conditions, almost all the random entire functions f(s,ω) and ψ_(τ_0)(s,ω) have, in every horizontal strip, the same order, given byρ=lim sup((λ_nlogλ_n)/(log A_n~(-1)))whereA_n=max |a_(nj)|.Similar results are given if the Rademacher sequence {ε_(nj)} is replaced by a steinhaus seqence or a complex normal sequence.  相似文献   

10.
Let L(x) denote the number of square-full integers not exceeding x. It is proved in [1] thatL(x)~(ζ(3/2)/ζ(3))x~(1/2) (ζ(2/3)/ζ(2))x~(1/3) as x→∞,where ζ(s) denotes the Riemann zeta function. Let △(x) denote the error function in the asymptotic formula for L(x). It was shown by D. Suryanaryana~([2]) on the Riemann hypothesis (RH) that1/x integral from n=1 to x |△(t)|dt=O(x~(1/10 s))for every ε>0. In this paper the author proves the following asymptotic formula for the mean-value of △(x) under the assumption of R. H.integral from n=1 to T (△~2(t/t~(6/5))) dt~c log T,where c>0 is a constant.  相似文献   

11.
To answer the rest part of the problem of Boas R. P. on derivative of polynomial, it is shown that if $\[p(z)\]$ is a polynomial of degree n such that $\[\mathop {\max }\limits_{\left| z \right| \le 1} \left| {p(z)} \right| \le 1\]$ and $\[{p(z) \ne 0}\]$ in $\[\left| z \right| \le k,0 < k \le 1\]$, then $\[\left| {{p^''}(z)} \right| \le n/(1 + {k^n})\]$ for $\[\left| z \right| \le 1\]$. The above estimate is sharp and the equation holds for $\[p(z) = ({z^n} + {k^n})/(1 + {k^n})\]$.  相似文献   

12.
The number $\[A({d_1}, \cdots ,{d_n})\]$ of solutions of the equation $$\[\sum\limits_{i = 0}^n {\frac{{{x_i}}}{{{d_i}}}} \equiv 0(\bmod 1),0 < {x_i} < {d_i}(i = 1,2, \cdots ,n)\]$$ where all the $\[{d_i}s\]$ are positive integers, is of significance in the estimation of the number $\[N({d_1}, \cdots {d_n})\]$ of solutiohs in a finite field $\[{F_q}\]$ of the equation $$\[\sum\limits_{i = 1}^n {{a_i}x_i^{{d_i}}} = 0,{x_i} \in {F_q}(i = 1,2, \cdots ,n)\]$$ where all the $\[a_i^''s\]$ belong to $\[F_q^*\]$. the multiplication group of $\[F_q^{[1,2]}\]$. In this paper, applying the inclusion-exclusion principle, a greneral formula to compute $\[A({d_1}, \cdots ,{d_n})\]$ is obtained. For some special cases more convenient formulas for $\[A({d_1}, \cdots ,{d_n})\]$ are also given, for example, if $\[{d_i}|{d_{i + 1}},i = 1, \cdots ,n - 1\]$, then $$\[A({d_1}, \cdots ,{d_n}) = ({d_{n - 1}} - 1) \cdots ({d_1} - 1) - ({d_{n - 2}} - 1) \cdots ({d_1} - 1) + \cdots + {( - 1)^n}({d_2} - 1)({d_1} - 1) + {( - 1)^n}({d_1} - 1).\]$$  相似文献   

13.
Let(X,Y),(X_1,Y_1),…,(X_n,Y_n)be iid.random vectors,where Y is one-dimensional.It is desired to estimate the conditional median(X)of Y,by use of Z_n={(X_i,Y_i),i=1,…,n}and X.Denote by(X,Z_n)the kNN estimate of(X),and putH_(nk)(Z_n)=E{|(X,Z_n)-(X)||Z_n},the conditional mean absolute error.This articalestablishes the optimal convergence rate of P(H_(nk_n)(Z_n)>ε),under fairly generalassumptions on(X,Y)and k_n,which tends to ∞ in some suitable way.  相似文献   

14.
In this paper we have extended the Putnam-Fuglede Theorem of nomal operators anddiscussed the condition for the Putnam-Fuglede Theorem holding.We have proved that ifA and B~* are hyponomal operators and AX=XB,then A~*X=XB~*;that if A and B~* aresemi-hyponomal operators and X is  相似文献   

15.
In this paper we consider the systems governed, by parabolioc equations \[\frac{{\partial y}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}} ({a_{ij}}(x,t)\frac{{\partial y}}{{\partial {x_j}}}) - ay + f(x,t)\] subject to the boundary control \[\frac{{\partial y}}{{\partial {\nu _A}}}{|_\sum } = u(x,t)\] with the initial condition \[y(x,0) = {y_0}(x)\] We suppose that U is a compact set but may not be convex in \[{H^{ - \frac{1}{2}}}(\Gamma )\], Given \[{y_1}( \cdot ) \in {L^2}(\Omega )\] and d>0, the time optimal control problem requiers to find the control \[u( \cdot ,t) \in U\] for steering the initial state {y_0}( \cdot )\] the final state \[\left\| {{y_1}( \cdot ) - y( \cdot ,t)} \right\| \le d\] in a minimum, time. The following maximum principle is proved: Theorem. If \[{u^*}(x,t)\] is the optimal control and \[{t^*}\] the optimal time, then there is a solution to the equation \[\left\{ {\begin{array}{*{20}{c}} { - \frac{{\partial p}}{{\partial t}} = \sum\limits_{i,j = 1}^n {\frac{\partial }{{\partial {x_i}}}({a_{ji}}(x,t)\frac{{\partial p}}{{\partial {x_j}}}) - \alpha p,} }\{\frac{{\partial p}}{{\partial {\nu _{{A^'}}}}}{|_\sum } = 0} \end{array}} \right.\] with the final condition \[p(x,{t^*}) = {y^*}(x,{t^*}) - {y_1}(x)\], such that \[\int_\Gamma {p(x,t){u^*}} (x,t)d\Gamma = \mathop {\max }\limits_{u( \cdot ) \in U} \int_\Gamma {p(x,t)u(x)d\Gamma } \]  相似文献   

16.
In this paper, the periodic boundary problem and the initial value problem for the nonlinear system of parabolic type $\[{u_t} = (grad\varphi (u))\]$ are studied, where $\[u = ({u_1}, \cdots ,{u_N})\]$ is an N-dimensional vector valued function, $\[\varphi (u)\]$ is a strict convex function of vector variable $\[u\]$, and its matrix of derivatives of second order is zero-definite at $\[u = 0\]$. This system is degenerate. The definition of the generalized solution of the problem: $\[u(x,t) \in {L_\infty }((0,T);{L_2}(R)),\]$, grad $\[\varphi (u) \in {L_\infty }((0,T);W_2^{(1)}(R)),\]$ and it satisfies appropriate integral relation. The existence and uniqueness of the generalized solution of the problem are proved. When N=1, the system is the commonly so-called degenerate partial differential equation of filtration type.  相似文献   

17.
In the present paper, we show that there exist a bounded, holomorphic function $\[f(z) \ne 0\]$ in the domain $\[\{ z = x + iy:\left| y \right| < \alpha \} \]$ such that $\[f(z)\]$ has a Dirichlet expansion $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ in the halfplane $\[x > {x_f}\]$ if and only if $\[\frac{a}{\pi }\log r - \sum\limits_{{u_n} < r} {\frac{2}{{{u_n}}}} \]$ has a finite upperbound on $\[[1, + \infty )\]$, where $\[\alpha \]$ is a positive constant,$\[{x_f}( < + \infty )\]$ is the abscissa of convergence of $\[\sum\limits_{n = 0}^{ + \infty } {{d_n}{e^{ - {u_n}}}} \]$ and the infinite sequence $\[\{ {u_n}\} \]$ satisfies $\[\mathop {\lim }\limits_{n \to + \infty } ({u_{n + 1}} - {u_n}) > 0\]$. We also point out some necessary conditions and sufficient ones Such that a bounded holomorphic function in an angular(or half-band) domain is identically zero if an infinite sequence of its derivatives and itself vanish at some point of the domain. Here some result are generalizations of those in [4].  相似文献   

18.
Let $F$ denote a field, finite or infinite, with characteristic $\[p \ne 0\]$. In this paper, the author obtains the following result: The symmetric polynomial on $t$ letters $$\[{S_{sym(t)}}({x_1},{x_2}, \cdots ,{x_t}) = \sum\limits_{x \in sym(t)} {{X_{\pi 1}}{X_{\pi 2}} \cdots {X_{\pi t}}} \]$$ is a polynomial identity of $\[{M_n}(F)\]$ when $\[t \ge pn\]$, and this is sharp in the sense that if $\[t \le pn - 1\]$,it is not a polynomial identity of $\[{M_n}(F)\]$.  相似文献   

19.
In this paper the author discusses the quasilinear parabolic equation $$\[\frac{{\partial u}}{{\partial t}} = \frac{\partial }{{\partial {x_i}}}[{a_{ij}}(x,t,u)\frac{{\partial u}}{{\partial {x_j}}}] + {b_i}(x,t,u)\frac{{\partial u}}{{\partial {x_i}}} + c(x,t,u)\]$$ Which is uniformly degenerate at $\[u = 0\]$. Let $\[u(x,t)\]$ be a classical solution of the equation satisfying $\[0 < u(x,t) \le M\]$. Under some assumptions the author establishes the interior estimations of Holder coefficient of the solution for the equation and the global estimations for Cauchy problems and the first boundary value problems, where Holder ooeffioients and exponents are independent of the lower positive bound of $\[u(x,t)\]$.  相似文献   

20.
Let X_1,…,X_n be iid samples drawn from an m-dimensional population with a probabilitydensity f,belonging to the family C_(ka),i.e.the family of all densities whose partialderivatives of order k are bounded by a.It is desired to estimate the value of f at somepredetermined point a,for example a=0.Farrell obtained some results concerning the bestpossible convergence rates for all estimator sequence,from which it follows,for example,thatthere exists no estimator sequence{γ_n(0)=γ_n(X_1,…,X_n,0)}such that(?)E_f[γ_n(0)-f(0)]~2=o(n~(-2k/(2k m))).This article pursues this problem further and proves that there existsno estimator sequence{γ_n(0)}such thatn~(-k/(2k m))(γ_n(0)-f(0))(?)0,for each f∈C_(ka),where(?)denotes convergence in probability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号