首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this research, thermal characterization and kinetics of Karakus crude oil in the presence of limestone matrix is investigated. Thermogravimetry (TG/DTG) is used to characterize the crude oil in the temperature range of 20-900°C, at 10°C min -1 heating rate using air flow rate of 20 mL min -1. In combustion with air, three distinct reaction regions were identified known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). Five different kinetic methods used to analyze the TG/DTG data to identify reaction parameters as activation energy and Arrhenius constant. On the other hand different f(α) models from literature were also applied to make comparison. It was observed that high temperature oxidation temperature (HTO) activation energy of Karakus crude oil is varied between 54.1 and 86.1 kJ mol -1, while low temperature oxidation temperature (LTO) is varied between 6.9 and 8.9 kJ mol -1.  相似文献   

2.
In this study, the oxidation behavior of crude oils in the presence and absence of rock cuttings was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) techniques. Prior to these tests, the composition of cuttings and properties of crude oils were analyzed. Three obvious reaction regions were observed from the TG/DTG curves which are recognized as low-temperature oxidation (LTO), fuel deposition (FD), and high-temperature oxidation. The effects of light components (C7–15), heavy fractions (asphaltene, paraffin, resin), and cutting on oil oxidation behavior were analyzed. Kinetic analysis of crude oils and oil + cutting mixtures was performed by Arrhenius method, and the data were analyzed at last. Results show that high content C7–15 hydrocarbons can provide negative effect on the LTO behavior of crude oil. On the contrary, the high content unsaturated heavy hydrocarbons including asphaltene, paraffin, and resin are benefit for the oxidation performance. In addition, a shortened FD stage and higher peak temperature in LTO region are observed by addition of cutting. Cutting especially clay in it plays an active role of catalyzing in oil oxidation reaction.  相似文献   

3.
In this study the combustion characteristics of crude oils (Karakuę and Beykan) in the presence of a limestone matrix were determined using the thermogravimetry (TG/DTG). Experiments were performed at a heating rate of 10°C min-1, whereas the air flow rate was kept constant at 10 L h-1 in the temperature range of 20-900°C. In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures studied known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The individual activation energies for each reaction region may be attributed to different reaction mechanisms, but they do not give any indication of the contribution of each region to the overall reactivity of the crude oils. Depending on the characteristics, the mean activation energy of samples varied between 50.3 and 55.8 kJ mol-1. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

4.
In the previous study, the oxidation behavior of four Chinese crude oils (Oil 1 to 4) in the presence and absence of rock cuttings was investigated by thermogravimetry/derivative thermogravimetry (TG/DTG) techniques and oxidation tube experiments. The present work investigates the thermal behavior of these oils by combining DTG–DTA method. First, we conducted comparative analysis about mass loss rate from DTG curves and endothermic/exothermic phenomenon from DTA curves attempting to clarify the endothermic or exothermic mechanism in crude oil low-temperature oxidation. Finally, we combined the thermal analysis method with low-temperature oil oxidation tube experiment in porous media to ascertain, whether the two methods are consistent in the aspect of low-temperature oxidation mechanism of crude oil by O2 consumption rate and CO2 generating rate (carbon bond stripping reaction rate). Results show that crude oils undergo an endothermic oxidation behavior during low-temperature oxidation stage, suggesting the decomposition of hydrocarbon components. Clay can play a catalytic effect on low-temperature oil oxidation. The results of DTG–DTA tests can also better reflect oil oxidation mechanism under real conditions.  相似文献   

5.
In this research, non-isothermal kinetics and feasibility study of medium grade crude oil is studied in the presence of a limestone matrix. Experiments were performed at a heating rate of 10°C min−1, whereas the air flow rate was kept constant at 50 mL min−1 in the temperature range of 20 to 600°C (DSC) and 20 to 900°C (TG). In combustion with air, three distinct reaction regions were identified in all crude oil/limestone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO). The activation energy values were in the order of 5–9 kJ mol−1 in LTO region and 189–229 kJ mol−1 in HTO region. It was concluded that the medium grade crude oil field was not feasible for a self-sustained combustion process.  相似文献   

6.
In this research, the effect of different lithology (limestone and sandstone) on the combustion of light crude oils was investigated using thermal analysis techniques. Three distinct reaction regions were identified in all of the crude oil+limestone and sandstone mixtures, known as low temperature oxidation (LTO), fuel deposition (FD) and high temperature oxidation (HTO), respectively. Kinetic analysis of the crude oil+limestone and sandstone mixtures was performed using Coats and Redfern method and the results are discussed.  相似文献   

7.
张庆轩  李金涛  张梦 《应用化学》2018,35(12):1470-1477
低温氧化是注空气采油及原位燃烧采油技术中的重要化学反应,为深入认识原油在有氧环境下复杂热反应过程中的低温氧化特性,我们采用热重/差热分析法(TG/DTA)研究了线性升温和等温条件下马瑞(Merey)原油的热反应行为。 结果表明,Merey原油在空气及线性升温条件下的受热过程分4个阶段:气化段、低温氧化段、热解段和高温氧化段;相邻阶段的物理、化学主导过程的重叠增加了分析原油热反应特征的难度。 升温速率提高,气化段和低温氧化段的终止温度不变;热解段和高温氧化段的终止温度以及热解段的峰温随升温速率的增加而升高。 N2气与空气下Merey原油的热重/微分热重(TG/DTG)数据对比表明,升温速率越高,空气下的高温氧化段与热解段重叠程度越大,这有利于燃烧但会降低原油采收率。 空气下等温时的TG/DTA结果表明随升温速率增加,升温至300 ℃时的失重率降低,不利于原油轻组分的气化。 反应温度越高,气化过程时间越长,失重分数越大。 Merey原油在低于300℃时低温氧化反应不是主导反应。  相似文献   

8.
In this research, thermo-oxidative reactions of crude oils of different origin are determined in limestone matrix using simultaneous thermogravimetry and differential thermal analysis (TG–DTA) systems. Two different reaction regions were identified known as low temperature (LTO) and high temperature oxidation (HTO). Kinetic parameters of the samples were determined by four different methods and the results are discussed.  相似文献   

9.
Using a sodium bentonite (VCNa) as substrate differently exchanged organophilic clays were obtained by reaction with hexadecyltrimethylammonium (HDTMA) chloride, at increasing reacting ratios (R) from 20 to 120 meq/100 g of clay (VC20–VC120). The sodium bentonite was previously synthesized from a Verde Claro policationic bentonite (VC) from Bravo, Paraiba State, Brazil. From the thermogravimetric (TG) and derivative thermogravimetric (DTG) analyses of these clays on calcined mass basis and from TG and DTG curves data of VCNa clay, a method was developed to estimate the mass fraction of the exchanged cation present in each organophilic clay (M org), as a function of R. When all sodium cations of VCNa are exchanged by HDTMA, the obtained organophilic clay presents a maximum value for M org. From this value and TG and DTG curves data of VC and VCNa clays, the cation exchange capacity of the original VC bentonite can be estimated.  相似文献   

10.
Thermogravimetry (TG) and differential scanning calorimetry (DSC) were used to study the effect of sand, silica and kaolinite on crude oil combustion. Three distinct regions, namely distillation and two combustion/cracking regions were observed on all TG curves. Thermogravimetric curves were analyzed using an Arrhenius-type kinetic model and a ratio method to obtain kinetic parameters. Activation energy and reaction order were obtained from this analysis. The reaction order seemed to be insensitive to the presence of granular materials. However, a significant reduction of activation energy was caused by addition of kaolinite to the crude oil, indicating that the kaolinite had a catalytic and surface area effect on crude oil combustion/cracking reactions.  相似文献   

11.
In this study, the rate of pyrolysis and oxidation of 8 different samples of oil shale kerogen concentrate (KC) were investigated using TG/DTG technique. The rate of pyrolysis after preoxidation step performed at low temperature (below 230°C), was also studied. The determined pyrolysis activation energy increases with increasing paraffinic structure in the KC: an opposite effect was determined in the case of oxidation. Comparison of the reaction rate constants of the pyrolysis as well as the oxidation of untreated and pre-oxidized KC samples indicated the basis of the proposed thermal method for kerogen type determination.
Zusammenfassung Mittels TG/DTG wird die Pyrolyse- und Oxidationsgeschwindigkeit von 8 verschiedenen Ölschieferkerogenkonzentraten (KC) untersucht, ebenso die Pyrolysegeschwindigkeit nach einem Präoxidationsschritt bei niedriger Temperatur (unter 230°C). Die Pyrolyse-Aktivierungsenergie steigt mit zunehmender Paraffinstruktur im KC, ein entgegengesetzter Effekt kann bei der Oxidation beobachtet werden. Ein Vergleich der Reaktionsgeschwindigkeit von Pyrolyse und Oxidation sowohl bei unbehandelten als auch voroxidierten KC-Proben zeigt auf die Basis der empfohlenen thermischen Methode bei Bestimmungen von kerogenen Substanzen.
  相似文献   

12.
A weighted mean activation energy method was applied to describe the reactivity and combustibility of crude oils via simultaneous TG/DTG. Thermal experiments were conducted with a non-isothermal method at a heating rate of 10C min–1 with excess air. Reaction rates increased progressively with increasing temperature. The rate data were fitted to an Arrhenius equation; the plots showed three distinct reaction regions. Weighted mean activation energies (E wm), of the crude oils were calculated and a correlation was established betweenE wm, API gravity and peak temperatures during high-temperature oxidation.  相似文献   

13.
The present work is focused on thermoanalytical investigations as thermogravimetric analysis (TG) and derivative thermal analysis (DTG), applied for the characterization of some samples collected from archaeological sites (Brasov and Trofeum Traiani) located in different regions of Romania. New informations derived about ceramic technologies concerning raw materials and binding materials (mineralogical components) have been obtained. All these experimental results have been correlated with related techniques as X-ray diffraction (XRD), energy-dispersive X-ray fluorescence (EDXRF) and inductively coupled plasma—atomic emission spectrometry (ICP-AES). By progressive heating in static air atmosphere and in the temperature range of 20–800 °C, all investigated materials exhibit three main successive processes, associated with the dehydration and thermo-oxidative degradations. The rate of the first thermooxidative process, temperatures corresponding to the maximum rate of the second thermooxidative process and shrinkage temperature were associated with the damage of the investigated materials due to environmental impact. Heating also affects the contact between the fine-sized clay matrix and mineral clast fragments, appearing in reaction rims, sometimes showing newly formed phases. The temperature at which ancient ceramics and pottery were fired varies over a wide range (600–800 °C) depending on the type of clay used, although firing temperatures not above 30–400 °C have also been suggested. Clay minerals, as the main material for production of ceramics and pottery, show some characteristic reactions (dehydroxylation, decomposition, transformation) in the course of firing (heating effects) and several thermoanalytical criteria can be used for reconstruction of former production conditions.  相似文献   

14.
This research was aimed to investigate the role of clay on the combustion and kinetic behavior of crude oils in limestone matrix. For this purpose, simultaneous TG (thermogravimetry) and DTA (differential thermal analysis) experiments were performed at three different heating rates as 10–15 and 20°C min–1, respectively. A uniform trend of decreasing activation energies was observed with the addition of clay. It was concluded that clays surface area affects the values of Arrhenius constant, while it is the catalytic properties of clay, which lower the activation energies of all the reactions, involved in the combustion process.  相似文献   

15.
This research aimed at the investigation of the effect of different metallic additive on the combustion and kinetic behavior of crude oil. For this purpose, the thermal behavior of the oil-only and oil–metallic salts mixtures were studies by the thermogravimetry (TG)/derivative thermogravimetry and differential scanning calorimetry (DSC) on heating rate at 10 °C min?1. The result shows that Dagang crude oil exhibited apparent low temperature oxidation (LTO), fuel deposition, and high temperature oxidation processes. With the addition of metallic salts, the LTO process has been shortened and samples added CuSO4, CrCl3·6H2O, and AlCl3·6H2O achieved a much lower peak temperature than that of oil. Based on the Arrhenius model, metallic additives were proven to have obvious influence on the combustion activation energy. And, by comprehensive analysis of TG/DSC profile and activation energy, ZnSO4 exhibited a positive influence on light crude oil combustion during the high pressure air injection process.  相似文献   

16.

In the paper, various laboratory pyrolytic methods were used to evaluate selected petroleum source rocks. The methods used are: Rock–Eval pyrolysis, Py–GC pyrolytic technique and TG/DTG/DSC. The experiments of the last method were performed according to three different procedures. Each of them provided different, specific data. The selected rock sample material was diversified in terms of stratigraphical position, structural unit and place of collection (outcrop or borehole). Based on the Rock–Eval analysis results, kerogen in samples can be classified as type II. Additional information on the quality of pyrolysis products was obtained from the Py–GC analysis. Thanks to the combination of the all three implemented pyrolytic techniques, the quality of the generation potential of the source rocks can be evaluated in details. In some samples, the oxidation and pyrolysis of organic matter occur in two stages, what is the evidence of the complex nature of the organic substance. The maximum of pyrolysis reaction is detected by TG/DTG measurement in the range of temperature from 450 to 580 °C, depending on the maturity of organic matter. The maturity level increases with the rock stratigraphic position. The proportions of loss in mass observed in respective stages of pyrolysis in course of TG/DTG experiment are in correspondence with the observations of the released fractions in the Py–GC analysis. The Carpathian Menilite shales could be classified as source rocks with high oil generation potential. Also, the Lower Silurian and Ordovician shales are characterized by high oil-producing potential with a lower content of mineral matter. Cambrian rocks show a different character and gas-prone generation potential.

  相似文献   

17.
In this research thermal analysis and kinetics of ten lignite's and two oil shale samples of different origin were performed using a TA 2960 thermal analysis system with thermogravimetry (TG/DTG) and differential al analysis (DTA) modules. Experiments were performed with a sample size of ~10 mg, heating rate of 10°C min-1. Flow rate was kept constant (10 L h-1) in the temperature range of 20-900°C. Mainly three different reaction regions were observed in most of the samples studied. The first region was due to the evaporation of moisture in the sample. The second region was due to the release of volatile matter and burning of carbon and called as primary reaction region. Third region was due to the decomposition of mineral matter in samples studied. In kinetic calculations, oxidation of lignite and oil shale is described by first-order kinetics. Depending on the characteristics of the samples, the activation energy values are varied and the results are discussed. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

18.
Hydrotalcite was synthesised by co-precipitation method, calcined and characterized by XRD, BET, IR and TG/DTA/DTG analyses and tested as solid base catalyst in the transesterification of soybean oil with methanol, achieving a methyl ester content of 99.5%. The thermal decomposition of hydrotalcite calcined occurred in four mass loss steps at 28, 105, 203 and 400 °C. The hydrotalcite was recovered and through a simple evaluation by TG/DTA/DTG techniques it was found that at 500 °C is the temperature, where the organic matter should be eliminated from the catalyst. This study shows the importance of thermal analysis in the evaluation of the recovery temperature of hydrotalcite.  相似文献   

19.
The Pracaxi oil—(Pentaclethra macroloba) contains high concentrations of fatty acids with emollient action that contribute to skin hydration. The use of this oil is supported by the utilization of natural resources thus enabling regional development and social contribution. The objective of this study was to characterize the P. macroloba oil by thermogravimetry (TG, DTG, and DTA), gas chromatography, Fourier transform infrared spectroscopy (FT-IR), and oxidation stability—Rancimat, aiming at the quality control of plant raw material. Three samples of crude oil sold by Amazon Oil Industry (Ananindeua, Pará, Brazil) were studied. The analysis of these oil samples showed different fatty acids, especially the behenic, oleic, linoleic, and lignoceric acids totalizing approximately 96 % of the grease composition and in smaller percentage arachidic, lauric, myristic, palmitic, and linolenic acids were found. The major acids have wide medicinal use. According to the TG/DTG curve, thermal stability was observed up to 220 °C, indicating a greater mass loss related to the dehydration and elimination of volatile substances. The thermal decomposition process occurred in the range of 430–450° C according to the DTG curve. The absorption spectrum in the infrared region (FT-IR) showed well-defined bands confirming the presence of functional groups present in the oil. Tests in a Rancimat have shown an induction period between 8 and 10 h demonstrating that the samples are in agreement with the standards required by ANP No. 14/2012 which requires at least 6 h of testing.  相似文献   

20.
This research presents the results of an experimental study on the determination of pyrolysis behaviour and kinetics of six crude oils by differential scanning calorimetry (DSC) and thermogravimetry (TG/DTG). Crude oil pyrolysis indicated two main temperature ranges where loss of mass was observed. The first region between ambient to 400°C was distillation. The second region between 400 and 600°C was visbreaking and thermal cracking. Arrhenius-type kinetic model is used to determine the kinetic parameters of crude oils studied. It was observed that as crude oils gets heavier (°API decreases) cracking activation energy increases. Activation energy of cracking also show a general trend with asphaltene content. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号