首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
Relative equilibria, i.e., steady motions associated to specified group motions, are an important class of steady motions of Hamiltonian and Lagrangian systems with symmetry. Relative equilibria can be identified by means of a variational principle on the tangent space of the configuration manifold. We show that relative equilibria can also be found by means of a variational principle on the configuration manifold itself. Formal stability of a relative equilibrium corresponds to definiteness of the second variation of the energymomentum functional, which is a specified combination of the total energy and the group momentum, on an appropriate subspace. We decompose this subspace into three subspaces by means of the Legendre transformation and the group action and show that the second variation block diagonalizes with respect to these subspaces. The techniques employed here are a generalization of the reduced energy-momentum method of Simoet al. (1991), which applies only to simple mechanical systems, to a more general class of conservative systems, including systems on which the symmetry group does not act freely. We briefly discuss a generalization of a result due to Patrick (1990) that provides conditions under which formal stability implies nonlinear orbital stability. Several simple examples, including natural mechanical systems, are used to illustrate the block diagonalization procedure.  相似文献   

2.
Feedback control of piecewise smooth discrete-time systems that undergo border collision bifurcations is considered. These bifurcations occur when a fixed point or a periodic orbit of a piecewise smooth system crosses or collides with the border between two regions of smooth operation as a system parameter is quasistatically varied. The class of systems studied is piecewise smooth maps that depend on a parameter, where the system dimension n can take any value. The goal of the control effort in this work is to replace the bifurcation so that in the closed-loop system, the steady state remains locally attracting and locally unique (“nonbifurcation with persistent stability”). To achieve this, Lyapunov and linear matrix inequality (LMI) techniques are used to derive a sufficient condition for nonbifurcation with persistent stability. The derived condition is stated in terms of LMIs. This condition is then used as a basis for the design of feedback controls to eliminate border collision bifurcations in piecewise smooth maps and to produce the desirable behavior noted earlier. Numerical examples that demonstrate the effectiveness of the proposed control techniques are given.  相似文献   

3.
In this study a new procedure for analysis of nonlinear dynamical systems with periodically varying parameters under critical conditions is presented through an application of the Liapunov-Floquet (L-F) transformation. The L-F transformation is obtained by computing the state transition matrix associated with the linear part of the problem. The elements of the state transition matrix are expressed in terms of Chebyshev polynomials in timet which is suitable for algebraic manipulations. Application of Floquet theory and the eigen-analysis of the state transition matrix at the end of one principal period provides the L-F transformation matrix in terms of the Chebyshev polynomials. Since this is a periodic matrix, the L-F transformation matrix has a Fourier representation. It is well known that such a transformation converts a linear periodic system into a linear time-invariant one. When applied to quasi-linear equations with periodic coefficients, a dynamically similar system is obtained whose linear part is time-invariant and the nonlinear part consists of coefficients which are periodic. Due to this property of the L-F transformation, a periodic orbit in original coordinates will have a fixed point representation in the transformed coordinates. In this study, the bifurcation analysis of the transformed equations, obtained after the application of the L-F transformation, is conducted by employingtime-dependent center manifold reduction andtime-dependent normal form theory. The above procedures are analogous to existing methods that are employed in the study of bifurcations of autonomous systems. For the two physical examples considered, the three generic codimension one bifurcations namely, Hopf, flip and fold bifurcations are analyzed. In the first example, the primary bifurcations of a parametrically excited single degree of freedom pendulum is studied. As a second example, a double inverted pendulum subjected to a periodic loading which undergoes Hopf or flip bifurcation is analyzed. The methodology is semi-analytic in nature and provides quantitative measure of stability when compared to point mappings method. Furthermore, the technique is applicable also to those systems where the periodic term of the linear part does not contain a small parameter which is certainly not the case with perturbation or averaging methods. The conclusions of the study are substantiated by numerical simulations. It is believed that analysis of this nature has been reported for the first time for this class of systems.  相似文献   

4.
The exponential synchronization problem is studied in this paper for a class of chaotic Lur’e systems by using delayed feedback control. An augmented Lyapunov functional based approach is proposed to deal with this issue. A delay-dependent condition is established such that the controlled slave system can exponentially synchronize with the master system. It is shown that the delayed feedback gain matrix and the exponential decay rate can be obtained by solving a set of linear matrix inequalities. The decay coefficient can be also easily calculated. Finally, as an example, the Chua’s circuit is used to illustrate the effectiveness of the developed approach and the improvement over some existing results.  相似文献   

5.
The basic problem of order reduction of nonlinear systems with time periodic coefficients is considered in state space and in direct second order (structural) form. In state space order reduction methods, the equations of motion are expressed as a set of first order equations and transformed using the Lyapunov–Floquet (L–F) transformation such that the linear parts of new set of equations are time invariant. At this stage, four order reduction methodologies, namely linear, nonlinear projection via singular perturbation, post-processing approach and invariant manifold technique, are suggested. The invariant manifold technique yields a unique ‘reducibility condition’ that provides the conditions under which an accurate nonlinear order reduction is possible. Unlike perturbation or averaging type approaches, the parametric excitation term is not assumed to be small. An alternate approach of deriving reduced order models in direct second order form is also presented. Here the system is converted into an equivalent second order nonlinear system with time invariant linear system matrices and periodically modulated nonlinearities via the L–F and other canonical transformations. Then a master-slave separation of degrees of freedom is used and a nonlinear relation between the slave coordinates and the master coordinates is constructed. This method yields the same ‘reducibility conditions’ obtained by invariant manifold approach in state space. Some examples are given to show potential applications to real problems using above mentioned methodologies. Order reduction possibilities and results for various cases including ‘parametric’, ‘internal’, ‘true internal’ and ‘true combination resonances’ are discussed. A generalization of these ideas to periodic-quasiperiodic systems is included and demonstrated by means of an example.  相似文献   

6.
This paper is concerned with the robust quantized feedback stabilization problem for a class of uncertain nonlinear large-scale systems with dead-zone nonlinearity in actuator devices. It is assumed that state signals of each subsystem are quantized and the quantized state signals are transmitted over a digital channel to the controller side. Combined with a proposed discrete on-line adjustment policy of quantization parameters, a decentralized sliding mode quantized feedback control scheme is developed to tackle parameter uncertainties and dead-zone input nonlinearity simultaneously, and ensure that the system trajectory of each subsystem converges to the corresponding desired sliding manifold. Finally, an example is given to verify the validity of the theoretical result.  相似文献   

7.
非线性时滞动力系统的研究进展   总被引:25,自引:1,他引:24  
胡海岩  王在华 《力学进展》1999,29(4):501-512
具有时滞的动力系统广泛存在于各工程领域.本文从动力学角度对时滞动力系统的研究进展作一综述,内容包括时滞动力系统的特点、研究方法、动力学热点问题的研究进展等.由于时滞动力系统的演化趋势不仅依赖于系统的当前状态,还依赖于系统过去某一时刻或若干时刻的状态,其运动方程要用泛国微分方程来描述,解空间是无穷维的.即使系统中的时滞非常小,在许多情况下也不能忽略不计.对于非线性时滞常微分方程,目前的研究思路基本上与常微分方程系统理论相平行.主要研究方法可分为时域法和频域法,前者包括Taylor级数法,中心流形法,Poincare映射法等,后者包括Nyquist法等.目前对这类系统的动力学研究主要集中在稳定性、Hopf分岔、混沌等方面.研究表明:时滞动力系统具有非常丰富和复杂的动力学行为,如单变量的一维非线性时滞动力系统可发生混沌现象,与用常微分方程描述的系统有本质性差别.另一方面,人们可巧妙地利用时滞来控制动力系统的行为,如时滞反馈控制是控制混饨的主要方法之一.最后,本文展望了存在的一些问题以及近期值得关注的研究.  相似文献   

8.
We obtain existence of traveling wave solutions for a class of spatially discrete systems, namely, lattice differential equations. Uniqueness of the wave speed c, and uniqueness of the solution with c0, are also shown. More generally, the global structure of the set of all traveling wave solutions is shown to be a smooth manifold where c0. Convergence results for solutions are obtained at the singular perturbation limit c 0.  相似文献   

9.
This paper considers the stabilization problem of nonlinear systems with center manifold (center systems). A new method based on (system) immersion and (manifold) invariance (I&I) is introduced to stabilize the center systems. One of the key steps is to define a target dynamics whose order should be strictly smaller than that of the system to be controlled. For the center systems, we prove that the order of the target dynamics can be equal to that of the corresponding reduced dynamics on their center manifolds. Constructing solution is given for the target dynamics of the quadratic center system with a transcritical or a Hopf control bifurcation. Illustrating examples with simulations are respectively presented to validate the proposed stabilization scheme. Supported by the National Natural Science Foundation of China (Grant No. 60674024).  相似文献   

10.
Dynamics and Control of Initialized Fractional-Order Systems   总被引:7,自引:0,他引:7  
Hartley  Tom T.  Lorenzo  Carl F. 《Nonlinear dynamics》2002,29(1-4):201-233
Due to the importance of historical effects in fractional-order systems,this paper presents a general fractional-order system and control theorythat includes the time-varying initialization response. Previous studieshave not properly accounted for these historical effects. Theinitialization response, along with the forced response, forfractional-order systems is determined. The scalar fractional-orderimpulse response is determined, and is a generalization of theexponential function. Stability properties of fractional-order systemsare presented in the complex w-plane, which is a transformation of thes-plane. Time responses are discussed with respect to pole positions inthe complex w-plane and frequency response behavior is included. Afractional-order vector space representation, which is a generalizationof the state space concept, is presented including the initializationresponse. Control methods for vector representations of initializedfractional-order systems are shown. Finally, the fractional-orderdifferintegral is generalized to continuous order-distributions whichhave the possibility of including all fractional orders in a transferfunction.  相似文献   

11.
We consider random dynamical systems with slow and fast variables driven by two independent metric dynamical systems modeling stochastic noise. We establish the existence of a random inertial manifold eliminating the fast variables. If the scaling parameter tends to zero, the inertial manifold tends to another manifold which is called the slow manifold. We achieve our results by means of a fixed point technique based on a random graph transform. To apply this technique we need an asymptotic gap condition.   相似文献   

12.
In this paper we deal with the control of chaotic systems. Knowing that a chaotic attractor contains a myriad of unstable periodic orbits (UPO’s), the aim of our work is to stabilize some of the UPO’s embedded in the chaotic attractor and which have interesting characteristics. First, using the input-to-state linearization method in conjunction with a time-delayed state feedback, we design a control signal that can achieve stabilization. Next, an adaptive time-delayed state feedback is proposed which shows at once efficiency and simplicity and circumvents the construction complexity of the first controller. Finally, we propose a reduced order sliding mode observer to estimate the necessary states for the design of an adaptive time delayed state feedback controller. This last controller has one main advantage, it in fact achieves UPO stabilization without using the system model. The efficacy of the proposed methods is illustrated by numerical simulations onto Chua’s system.  相似文献   

13.
The nonlinear dynamics of ships and floating offshore platforms hasattracted much attention over the last several years. However the topicof multiple-degrees-of-freedom systems has almost been completely ignoredwith very few exceptions. This is probably due to the complexity ofanalyzing strongly nonlinear and coupled systems. It turns out thatcoupling may be particularly important for certain critical dynamicssuch as the dynamics of a floating offshore platform about its diagonalaxis. In a previous work, Kota et al. [1] applied the recently developed nonlinearnormal mode technique to analyze the coupled nonlinear dynamics of afloating offshore platform. Although this previous work was restrictedto unforced and undamped systems, in this work a comparison of the twoalternative nonlinear normal mode analysis techniques was completed.Considering the relative practical importance of damping versus externalforcing for this system, in the present work, we utilize just one of thetwo major techniques available [2] to analyze damped multiple-degrees-of-freedom nonlinear dynamics. Specifically, we investigate the effect ofnonlinearity, and non-proportionate damping. Our results show that thistechnique allows one to simply consider the effect of nonlinearity andgeneral damping on the resulting normal modes. This technique isparticularly powerful because it allows one to visualize the modes in ageometric fashion using the invariant manifold concept from dynamicalsystems.  相似文献   

14.
The classical Fokker–Planck equation is a linear parabolic equation which describes the time evolution of the probability distribution of a stochastic process defined on a Euclidean space. Corresponding to a stochastic process, there often exists a free energy functional which is defined on the space of probability distributions and is a linear combination of a potential and an entropy. In recent years, it has been shown that the Fokker–Planck equation is the gradient flow of the free energy functional defined on the Riemannian manifold of probability distributions whose inner product is generated by a 2-Wasserstein distance. In this paper, we consider analogous matters for a free energy functional or Markov process defined on a graph with a finite number of vertices and edges. If N ≧ 2 is the number of vertices of the graph, we show that the corresponding Fokker–Planck equation is a system of N nonlinear ordinary differential equations defined on a Riemannian manifold of probability distributions. However, in contrast to stochastic processes defined on Euclidean spaces, the situation is more subtle for discrete spaces. We have different choices for inner products on the space of probability distributions resulting in different Fokker–Planck equations for the same process. It is shown that there is a strong connection but there are also substantial discrepancies between the systems of ordinary differential equations and the classical Fokker–Planck equation on Euclidean spaces. Furthermore, both systems of ordinary differential equations are gradient flows for the same free energy functional defined on the Riemannian manifolds of probability distributions with different metrics. Some examples are also discussed.  相似文献   

15.
In this article we establish an interaction between non-smooth systems, geometric singular perturbation theory and synchronization phenomena. We find conditions for a non-smooth vector fields be locally synchronized. Moreover its regularization provide a singular perturbation problem with attracting critical manifold. We also state a result about the synchronization which occurs in the regularization of the fold-fold case. We restrict ourselves to the 3-dimensional systems ( = 3) and consider the case known as a T-singularity.  相似文献   

16.
This paper is concerned with the output feedback \(\mathcal {H}_\infty \) control problem for a class of stochastic nonlinear systems with time-varying state delays; the system dynamics is governed by the stochastic time-delay It \(\hat{o}\) -type differential equation with state and disturbance contaminated by white noises. The design of the output feedback \(\mathcal {H}_\infty \) control is based on the stochastic dissipative theory. By establishing the stochastic dissipation of the closed-loop system, the delay-dependent and delay-independent approaches are proposed for designing the output feedback \(\mathcal {H}_\infty \) controller. It is shown that the output feedback \(\mathcal {H}_\infty \) control problem for the stochastic nonlinear time-delay systems can be solved by two delay-involved Hamilton–Jacobi inequalities. A numerical example is provided to illustrate the effectiveness of the proposed methods.  相似文献   

17.
Hua  Changchun  Ning  Jinghua  Guan  Xinping 《Nonlinear dynamics》2021,103(2):1599-1610

This paper focuses on the output feedback tracking control for fractional-order interconnected systems with unmodeled dynamics. The reduced order high gain K-filters are designed to construct the estimation of the unavailable system state. Unmodeled dynamics is extended to the general fractional-order dynamical systems for the first time which is characterized by introducing a dynamical signal r(t). An adaptive output feedback controller is established using the fractional-order Lyapunov methods and proposed by novel dynamic surface control strategy. Then, it is confirmed that the considered system is semi-globally bounded stable and the errors between outputs and the desired trajectories can concentrate to a small neighborhood of the origin. Finally, a simulation example is introduced to demonstrate the correctness of the supplied controller.

  相似文献   

18.
A class of nonlinear parabolic partial differential equations is considered, and an exact finite dimensional feedback control law is designed in order to force the systems to behave in a prescribed way. The feedback law is obtained via inertial manifold theory by reducing the system to finite dimensions. The control achieved is exact, as opposed to approximate, as obtained in a previous work. The result is applied to the Chafee–Infante equation, a one-dimensional scalar reaction-diffusion equation, with distributed control.  相似文献   

19.
This paper is concerned with the stabilization control for the offshore steel jacket platforms subject to wave-induced force. Two state feedback stabilization control schemes are proposed to reduce the vibration amplitudes of the systems. One scheme is that for the systems without actuator time-delay, a state feedback controller is designed. Compared with the nonlinear controller, both the control force and the vibration amplitudes of the systems under the state feedback controller are much reduced; and compared with the dynamic output feedback controller and the integral sliding mode controller, the required control force under the state feedback controller are significantly reduced. The other scheme is that based on the integral inequality approach, a delay-dependent state feedback controller, which can be solved by using the cone complementarity algorithm, is developed to control the systems with actuator time-delays. Compared with the state feedback controller, the delay-dependent state feedback controller is less conservative with actuator time-delays. In addition, it is capable of improving the control performance of the offshore platforms significantly, which are illustrated by simulation results.  相似文献   

20.
This paper presents a detailed analysis on the dynamics of a delayed oscillator with negative damping and delayed feedback control. Firstly, a linear stability analysis for the trivial equilibrium is given. Then, the direction of Hopf bifurcation and stability of periodic solutions bifurcating from trivial equilibrium are determined by using the normal form theory and center manifold theorem. It shows that with properly chosen delay and gain in the delayed feedback path, this controlled delayed system may have stable equilibrium, or periodic solutions, or quasi-periodic solutions, or coexisting stable solutions. In addition, the controlled system may exhibit period-doubling bifurcation which eventually leads to chaos. Finally, some new interesting phenomena, such as the coexistence of periodic orbits and chaotic attractors, have been observed. The results indicate that delayed feedback control can make systems with state delay produce more complicated dynamics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号