首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Seven Zn(II) and Cd(II) complexes of ON donor acetone-N(4)-phenylsemicarbazone (HL) have been synthesized and physico-chemically characterized by partial elemental analyses, molar conductance measurements, infrared, electronic and 1H NMR spectral studies. The semicarbazone binds the metal as a neutral bidentate ligand in all the complexes. The crystal structures of acetone-N(4)-phenylsemicarbazone and [Cd(HL)2Cl2] have been determined by X-ray diffraction studies. The coordination geometry around cadmium(II) in the complex [Cd(HL)2Cl2] is distorted octahedral.  相似文献   

2.
A novel mixed ligand nickel complex [NiLB] [H2L-N-4-diethylaminosalicylidine-N′-4-nitrobenzoyl hydrazone and B-4-picoline] has been synthesized and characterized by elemental analysis, IR spectrum, UV-Vis spectrum and structure has been confirmed by single crystal X-ray structure analysis. The crystal structure reveals that the complex adopts distorted square planar structure with ONO donor atoms of primary ligand and N donor atom of the secondary ligand 4-picoline.  相似文献   

3.

Ligand bridged polymeric complexes of the type [M(apainh)(H2O)X] where, M=Mn(II), Co(II), Ni(II), Cu(II), and Zn(II); X=Cl2 or SO4; apainh=acetone p‐amino acetophenone isonicotinoyl hydrazone have been synthesized and characterized. The complexes are stable solids, insoluble in common organic solvents and are non‐electrolytes. Magnetic moments and electronic spectral studies suggest a spin‐free octahedral geometry for all Mn(II), Co(II), Ni(II), and Cu(II) complexes. IR spectra show tridentate nature of the ligand bonding through two >C?N and a >C?O groups. X‐ray powder diffraction parameters for some of the complexes correspond to orthorhombic and tetragonal crystal lattices. Thermal studies (TGA and DTA) of [Mn(apainh)(H2O)SO4] complex show multi‐step decomposition pattern of both an endothermic and exothermic nature. ESR data of Cu(II) chloride complex in solid state show an axial spectra, whereas, Cu(II) sulfate complex is isotropic in nature. The complexes show a significant antifungal activity against a number of pathogenic fungal species and antibacterial activity against Pseudomonas sp. and Clostridium sp. The metal complexes are more active than the ligand.  相似文献   

4.
A new transition metal complex, [Cu(N-MeIm)4(BF4)2](N-MeIm=N-methylated imidazoles, BF4= tetrafluoroborate), was synthesized via the solvothermal method in ionic liquid. The ionic liquid acts as thermal decomposition reaction medium, soft temple agent and ligand compound. The central Cu(II) ion is coordinated by four N atoms from four N-methylated imidazole ligands, and the four N-methylated imidazole rings are perpendicular to each other. The crystal structure of [Cu(N-MeIm)4(BF4)2] was determined by single crystal X-ray diffraction. The results of thermogravimetry(TG) and Fourier transform infrared spectrometry(FTIR) analyses were in accordance with that of crystal structure. The complex showed strong ligand-based absorbance with maximum wavelength at 208 and 231 nm, which are attributed to π-π* transition of the N-methylated imidazole ligands.  相似文献   

5.

Reaction of the ligand 3-(pyridin-2-yl)pyrazole (L) with Cu(ClO4)2 and CuX2 (X=Cl, Br, I) gives complexes with stoichiometry [Cu(L)2X]ClO4 (X = Cl, Br, I). The new complexes were characterized by elemental analyses and infrared and electronic spectroscopy. The crystal structure of the [Cu(L)2Br]ClO4 was determined by X-ray crystallography. The cation complex (i.e. [Cu(L)2Br]P) contains copper(II) with a distorted trigonal bipyramid geometry with a Br ligand occupying an equatorial site. The penta-coordinated metal atom is bonded to two pyridinic nitrogens, two pyrazolic nitrogens, and one bromide anion. The pyrazolic H atoms are hydrogen bonded to Br atoms, resulting in infinite hydrogen-bonded chains running in the b direction. There are π‐π stacking interactions (charge-transfer arrays) between the parallel aromatic rings belonging to adjacent chains that may help to form hydrogen bonding in the coordination geometry around Cu (II).  相似文献   

6.
Complexes of Mn(II), Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Hg(II) with 2-acetyl pyridine (N-benzoyl) glycyl hydrazone(2-ApBzGH) have been synthesized and characterized by elemental analyses, molar conductances, magnetic susceptibility, IR, electronic, ESR,1H,13C and113Cd NMR spectral and X-ray diffraction studies. IR and NMR data suggest the tridentate nature of the ligand coordinating as a neutral species in the addition complexes and as a uninegative species in the deprotonated complexes. The presence of more than one isomer of the ligand has been established by1H NMR spectra of the ligand and complexes recorded over the 298–396 K range. The X-ray powder diffraction patterns of [Cd(2-ApBzGH)Cl]Cl and [Cu(2-ApBzGH)Cl(H2O)2]Cl are indexed for orthorhombic and tetragonal crystal systems respectively.  相似文献   

7.
The electronic absorption spectrum (diffuse reflection spectrum) of the crystal of [Cu6(bpy)10([mu-CO3)2(mu-OH)2](ClO4)6 . 4H2O has been measured. The experimental results are discussed quantitatively with ligand field theory and the radial wave function of non-free copper(II), and calculation values agree well with the experimental results. The d-d absorption spectrum of a novel hexanuclear copper(II) complex was explained satisfactorily. Especially, complexity of multinuclear crystal structures determined that of spectral behaviors. It provides significant to grope spectral nature from coordination structures.  相似文献   

8.
Novel complexes of Co(II), Ni(II), Cu(II) and Pd(II) with the new ligand [N,N'-bis(2-carboxy-1-oxo-phenelenyl)ethylenediamine] (H2L) have been synthesized and characterized on the basis of elemental analyses, magnetic susceptibility, thermal, infrared, electronic, 1H NMR and EPR spectral studies. Infrared and 1H NMR spectra show that H2L acts as a binegative tetradentate ligand. Coordination occurs through deprotonated carboxylate oxygens and nondeprotonated amido nitrogens in all the complexes. Electronic spectral studies and magnetic moment values suggest N2O2 coordination around each metal centre with strong field square planar chromophores. The probable structures of the complexes have been assigned on the basis of spectral studies. The complex formation between M(II) [M(II) = Mn(II), Co(II), Ni(II), Cu(II) and Zn(II)] and (L2-) has also been studied potentiometrically in 75% aqueous DMF at 25 degrees C in 0.1 M NaClO4. The stability constants were found to follow the order: Mn(II) < Co(II) < Ni(II) < Cu(II) > Zn(II).  相似文献   

9.
A new aroyl hydrazone, N-2-hydroxy-4-methoxyacetophenone-N'-4-nitrobenzoyl hydrazine was prepared by the condensation reaction of 2-hydroxy-4-methoxyacetophenone and 4-nitrobenzoyl hydrazine. Characterization of the compound was done by elemental analysis and electronic, infrared and NMR spectral analyses. The complete structural assignment of the compound was done by NMR studies by using COSY homonuclear and HSQC heteronuclear techniques. The crystal and molecular structure was determined by single crystal X-ray diffraction studies: crystallized in the monoclinic system, space group P2(1)/n, Z=4, a=7.3343(9)A, b=20.3517(9)A, c=10.1375(5)A, alpha=90.00 degrees, beta=95.735(7) degrees and gamma=90.00 degrees. From the crystal structure, it is concluded that the compound exists as the keto isomer in the solid state. There is a completely extended conformation in the central part of the molecule C5C8N1N2C10O2 with an E configuration at the double bond of the hydrazinic bridge.  相似文献   

10.
以(Bu4N)4Mo8O26为原料,以邻巯基苯酚和苯甲酰肼为配体,在甲醇中合成了未见报道的单核三元配合物二邻巯基苯酚-苯甲酰肼合钼(Ⅳ)酸双三乙基亚铵.通过元素分析、红外光谱、1H NMR谱、电子光谱、差热-热重分析对化合物的性质进行了表征,发现它是无端基氧钼配合物,并提出了其可能结构.  相似文献   

11.
以2-碳基丙酸水杨酰腙、咪唑与五水硫酸铜在水中反应,首次制得混配体配合 物Cu(C10H8N2O4)(C3H4N2)(H2O)[C10H8N2O4^2-为2-羰基丙酸水杨酰腙负离子 ;C3H4N2为咪唑],并在甲醇溶剂中培养出单晶.该单晶为深绿色,属单斜晶系, 空间群为P2(1)/c,晶胞参数a=1.50583(5)nm,b=1.08411(3)nm,c=0.94366(2)nm, α=90°,β=101.5583(11)°,γ=90°,V=1.50927(7)nm^3,Z=4,μ=1.479mm^-1, Dc=1.628Mg/m^3,F(000)=756.00,R=0.0340,ωR=0.0777,GOF=1.025。晶体测试结果 表明,配合物中Cu(Ⅱ)的配位数为5,处于四方锥配位环境,其中配体2—羰基丙酸 水杨酰腙的羧基以单齿配位.腙基上C≡N的N配位以及碳基(C≡0)的0配位,咪唑的 3位N参与了配位,这四个配位原子处于四方锥的锥底,另一个配位原子来自H20中 的0,它处于四方锥的锥顶.在晶胞中,除分子内存在氢键外,分子间也存在氢键 .根据TG-DTG曲线研究了配合物的热分解过程,利用Kissinger公式计算了配合物 主要分解阶段的表观活化能.  相似文献   

12.
The synthesis, spectral characterization and crystal structure of 2-benzoylpyridine nicotinoyl hydrazone (HL) is reported. Spectral techniques employed include 1H NMR, COSY homonuclear, HSQC heteronuclear correlation techniques, electronic and IR. The infrared spectrum suggests the existence of the compound in keto form in solid state, which is further established by the single crystal X-ray analysis. The compound crystallizes into a triclinic lattice with P-1 symmetry with two molecules per unit cell.  相似文献   

13.
A six-coordinate copper(II) complex with the ligand 1,3-bis(1-methylbenzimidazol-2-yl)-2-oxopropane (Meobb), with composition [Cu(Meobb)(2)](NO(3))(2)·2CH(3)OH, has been synthesized and characterized by elemental analysis, electrical conductivities, IR, UV-Vis spectral measurements. A study of the electro-chemistry of the copper(II) complex was carried out by using cyclic voltammetry. The molecular structures of the ligand Meobb and the Cu(II) complex were determined by X-ray crystal diffraction. The DNA-binding modes of the ligand and the complex were investigated by electronic absorption titration, ethidium bromide-DNA displacement experiments and viscosity measurements. The experimental evidence indicated the compounds interact with calf thymus DNA through intercalation. Additionally, the Cu(II) complex exhibited potential antioxidant properties in in vitro studies.  相似文献   

14.
A series of zeolite-Y encapsulated hybrid catalysts, [M(STCH)·xH2O]-Y have been prepared by encapsulating Schiff base complexes [where M?=?Mn(II), Fe(II), Co(II), Ni(II); (x?=?3) and Cu(II); (x?=?1); H2STCH?=?salicylaldehyde thiophene-2-carboxylic hydrazone] in zeolite-Y matrix by flexible ligand method. These hybrid materials have been characterized by various physico-chemical techniques such as ICP-OES, elemental analyses, (FT-IR and electronic) spectral studies, BET, scanning electron micrographs, thermal analysis and X-ray powder diffraction patterns. X-ray powder diffraction analysis reveals that the structural integrity of the mother zeolite in the hybrid material remained intact upon immobilization of the complex. Density functional theory is employed to calculate the relaxed structure, bond angle, bond distance, dihedral angle, difference of highest occupied molecular orbital and lowest unoccupied molecular orbital energies gap and electronic density of states of ligand and their neat transition metal complexes. The hybrid materials are active catalysts for the hydroxylation of phenol using hydrogen peroxide (30% H2O2) as an oxidant in order to selectively synthesize catechol or hydroquinone, amongst them [Cu(STCH)·H2O]-Y shown the highest % of selectivity towards catechol (81.3%).  相似文献   

15.
Summary The complex [Cu(tren)ImH](ClO4)2 [tren = tris(2-aminoethyl) amine, ImH = imidazole] has been synthesized and characterized by elemental analyses, conductivity measurements, magnetic moments, and electronic, i.r., e.s.r. and XPS spectral studies. The X-ray crystal structure reveals that there are two kinds of cation [Cu(tren)(ImH)]2+ in the crystal, cations A and B, in a 21 ratio, respectively; so the stoichiometric formula is [Cu(tren)(ImH)]1.5(ClO4)3. Cation B is disordered. The CuII ions in both cations A and B are in a trigonal bipyramidal geometry with the three primary amine groups of the tren ligand forming the equatorial plane, and the tertiary amine group and the imidazole ligand in apical positions.  相似文献   

16.
The complexes of Cr(III), Mn(II), Fe(III) and Cu(II) were synthesized with the macrocyclic ligand i.e. 2,3,9,10-tetraketo-1,4,8,11-tetraazacyclotetradecane. The ligand was prepared by the [2 + 2] condensation reaction of diethyloxalate and 1,3-diamino propane. These complexes were found to have the general composition M(L)X3 and M'(L)X2 [where M = Mn(II) and Cu(II), M' = Cr(III) and Fe(III), L = ligand (N4) and X = Cl-, NO3-, 1/2SO4(2-) and [CH3COO-]. The ligand and its transition metal complexes were characterized by the elemental analyses, molar conductance, magnetic susceptibility, mass, IR, electronic, and EPR spectral studies. On the basis of IR, electronic and EPR spectral studies an octahedral geometry has been assigned for Cr(III), Mn(II) and Fe(III) and a tetragonal geometry for Cu(II) complexes.  相似文献   

17.
A new copper(II) complex [Cu(HL)(ClO4)](ClO4) (1), where HL is a multidentate Schiff base N,N′-(2-hydroxypropane-1,3-diyl)bis(pyridine-2-aldimine), is prepared, structurally characterized by X-ray crystallography and its spectral and electrochemical properties studied. The complex forms a one-dimensional chain in the solid state structure in which the monomeric Cu(HL) units are linked by the perchlorate ligand. The complex has an axially elongated six coordinate geometry (4+2) with a CuN4O2 core in which the Schiff base ligand displays a tetradentate mode of bonding in the basal plane. The axial ligand is perchlorate with a significantly long Cu–O bond of ca. 2.6 Å. The one-electron paramagnetic complex displays a cyclic voltammetric response for the Cu(II)/Cu(I) couple at 0.01 V versus SCE in MeCN–0.1 M TBAP. The azomethine bond of the Schiff base in 1 on treatment with H2O2 undergoes oxidative conversion to form a bis(picolinato)copper(II) · dihydrate species through the formation of an amido intermediate as evidenced from the solution infrared spectral studies.  相似文献   

18.
This paper describes the preparation of [Cu(bh)(2)(H(2)O)(2)](NO(3))(2)], [Cu(ibh)(2)(NO(3))(2)], [Cu(ibh)(2)(H(2)O)(2)](NO(3))(2) and [Cu(iinh)(2)(NO(3))(2)] (bh=benzoyl hydrazine (C(6)H(5)CONHNH(2)); ibh=isonicotinoyl hydrazine (NC(5)H(4)CONHNH(2)); ibh=isopropanone benzoyl hydrazone (C(6)H(5)CONHN=C(CH(3))(2); iinh=isopropanone isonicotinoyl hydrazone (NC(5)H(4)CONHN=C(CH(3))(2)). These copper(II) complexes are characterized by elemental analyses, molar conductances, dehydration studies, ESR, IR and electronic spectral studies. The electronic and ESR spectra indicate that each complex exhibits a six-coordinate tetragonally distorted octahedral geometry in the solid state and in DMSO solution. The ESR spectra of most of the complexes are typically isotropic type at room temperature (300K) in solid state as well as in DMSO solution. However, all the complexes exhibit invariably axial signals at 77K in DMSO solution. The trend g(||)>g( perpendicular)>g(e,) observed in all the complexes suggests the presence of an unpaired electron in the [Formula: see text] orbital of the Cu(II). The bh and inh ligands bond to Cu(II) through the >CO and NH(2) groups whereas, ibh and iinh bond through >CO and >CN groups. The IR spectra of bh and ibh complexes also show HOH stretching and bending modes of coordinated water.  相似文献   

19.
The coordination chemistry of the tridentate ligand N-(2-hydroxy-3,5-di-tert-butylphenyl)-2-aminobenzylalcohol H3L has been studied with the copper(II) ion. The ligand is noninnocent in the sense that it is readily oxidized in the presence of air to its o-iminobenzosemiquinonato [L*]2- radical form. The crystal structure of the synthesized tetracopper(II)-tetraradical complex [CuII4(L*)4] (1), has been determined by X-ray crystallography at 100 K. Variable-temperature (2-290 K) magnetic susceptibility measurements of complex 1 containing eight paramagnetic centers establish the spin ground state to be diamagnetic (St=0) arising from the antiferromagnetic interactions. Electrochemical measurements (cyclic voltammograms and square wave voltammograms) indicate four one-electron reductions of the ligand prior to the reduction of the metal center. Complex 1 is found to catalyze the aerial oxidation of 2-aminophenol to 2-amino-phenoxazine-3-one, thus modeling the catalytic function of the copper-containing enzyme phenoxazinone synthase. Kinetic measurements together with electron paramagnetic resonance and electronic spectral studies have been used to decipher the complex six-electron oxidative coupling of 2-aminophenol. An "on-off" mechanism of the radicals together with redox participation of the metal center is proposed for the catalytic oxidation processes.  相似文献   

20.
A series of new copper(II), cobalt(II), nickel(II), manganese(II), iron(III), and uranyl(VI) complexes of the Schiff base hydrazone 7-chloro-4-(benzylidene-hydrazo)quinoline (HL) were prepared and characterized. The Schiff base behaves as a monobasic bidentate ligand. Mononuclear complexes with the general composition [ML2(Cl)m(H2O)2(OEt)n] x xEtOH (M = Cu(II), Co(II), Ni(II), Mn(II), Fe(III) or UO2(VI); m and n = 0-1; x = 1-3) were obtained in the presence of Li(OH) as a deprotonating agent. The nature of bonding and the stereochemistry of the complexes have been deduced from elemental analyses, infrared, electronic spectra, magnetic susceptibility and conductivity measurements. An octahedral geometry was suggested for all the complexes except the Cu(II) and UO2(VI) ones. The Cu(II) complex has a square-planar geometry distorted towards tetrahedral, while the UO2(VI) complex displays its favored heptacoordination. The Schiff base ligand, HL, and its complexes were tested against one strain gram +ve bacteria (Staphylococcus aureus), gram -ve bacteria (Escherichia coli), and Fungi (Candida albicans). The prepared metal complexes exhibited higher antibacterial activities than the parent ligand and their biopotency is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号