首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A suitable approach to stabilize palladium nanoparticles (Pd NPs), with an average diameter of 3–4 nm, on magnetic polymer is described. A new magnetic polymer containing 4′‐(4‐hydroxyphenyl)‐2,2′:6′,2″‐terpyridine (HPTPy) ligand was prepared by the polymerization of itaconic acid (ITC) as a monomer and trimethylolpropane triacrylate (TMPTA) as a cross‐linker and fully characterized. Pd NPs embedded on the magnetic polymer were successfully applied in Suzuki–Miyaura and Mizoroki–Heck coupling reactions under low palladium loading conditions, and provided the corresponding products with excellent yields (up to 98%) and high catalytic activities (TOF up to 257 hr?1). Also, the catalyst can be easily separated and reused for at least consecutive five times with a small drop in catalytic activity.  相似文献   

2.
Electrochemically codeposited palladium nanoparticles (Pd NPs) and reduced graphene oxide (ERGO-Pd) were used as catalyst for Suzuki cross coupling reactions. The catalyst was characterized by various analytical techniques. The mean particle size of Pd was found to be 5.7 ± 1.8 nm. The ERGO-Pd catalyst demonstrated excellent catalytic activity and recyclability for Suzuki cross coupling reactions. The remarkable reactivity of the ERGO-Pd catalyst toward cross-coupling reactions is attributed to the high degree of the dispersion of Pd NPs on reduced graphene oxide with narrow size distribution from 3 to 9 nm.  相似文献   

3.
PdPtZn and PdZn nanoparticle (NP) thin films were synthesized by the reduction of [PdCl2(cod)], [PtCl2(cod)] (cod = cis,cis‐1,5‐cyclooctadiene) and [Zn(acac)2] (acac = acetylacetonate) complexes at an oil–water interface. The structure and morphology of the as‐prepared NPs were characterized with X‐ray diffraction, transmission electron microscopy and energy dispersive analysis of X‐rays. Catalytic activity of the prepared NPs was investigated in the Suzuki–Miyaura cross‐coupling reaction in H2O–EtOH and various micellar media systems such as cetyltrimethylammonium bromide (cationic surfactant), sodium dodecylsulfate (anionic surfactant) and Pluronic P123 (non‐ionic surfactant). PdPtZn and PdZn thin films exhibited higher catalytic activity compared to Pd thin film in the Suzuki–Miyaura coupling reaction due to the appropriate interaction between palladium, platinum and zinc metals. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

4.
Eumelanin-supported palladium (Pd) nanoparticle (NP) catalysts was found to exhibit excellent catalytic activities with high turnover number (TON, 2000) and turnover frequency (TOF, 1000 h?1) for Suzuki cross coupling reaction of aryl chlorides in water. We propose that the amphiphilic property of the eumelanin support helps Pd NPs to catalyse the C–C coupling reaction in water through hydrophobic effect.  相似文献   

5.
硅纳米片负载钯催化剂的制备及其催化Suzuki反应研究   总被引:3,自引:3,他引:0  
通过硅化钙在酸性条件下水解制得二维硅纳米片载体材料,经3-氨丙基三乙氧基硅烷化学改性后与钯配位,再经还原得到了一种新型的硅纳米片负载钯催化剂,采用透射电镜和电感耦合等离子体质谱(ICP-MS)等手段对其进行了表征.并将该催化剂成功应用于Suzuki反应,结果表明,硅纳米片负载钯催化剂在较低的钯催化量和空气氛围下即可有效地催化多种溴代芳烃和芳基硼酸的Suzuki偶联反应.此外,该催化剂经8次循环使用后,催化活性无明显下降.  相似文献   

6.
Palladium nanoparticles (NPs) have been extensively explored as unique catalyst for carbon-carbon coupling reactions. Nonetheless, because of extreme tendency of nanoparticles to undergo agglomeration, the immobilization of these metal NPs on organic frameworks is an important area of research. The present investigation demonstrates the synthesis of pyrazine derivative PYZ - TA as a supramolecular host for holding co-released Pd NPs derived from the original catalyst (Pd(II)) under standard Suzuki coupling. Unprecedent, physical bars are not required to capture Pd NPs within the pores of supramolecular host. The as obtained catalyst PYZ - TA@Pd exhibits high potential to undergo self-assembly in solid as well as in liquid state. The PYZ - TA@Pd ensemble shows high catalytic activity and recyclability (up to seven cycles) in Suzuki-Miyaura coupling reactions using low palladium loading and provides the corresponding products in excellent yields (up to 98 %). Therefore, this study provides an efficient strategy to develop an easy to synthesize palladium centered solid catalyst through coordination between organic host and Pd NPs.  相似文献   

7.
Nanoparticles (2–10 nm) of palladium have been deposited on single wall carbon nanotubes (SWNT) by spontaneous reduction from Pd(OAc)2 or from oxime carbapalladacycle. These catalysts exhibit higher catalytic activity than palladium over activated carbon (Pd/C) for the Heck reaction of styrene and iodobenzene and for the Suzuki coupling of phenylboronic and iodobenzene. This fact has been attributed as reflecting the dramatic influence of the size particle on the activity of the palladium catalyst for CC bond forming reactions as compared to other reaction types less demanding from the point of view of the particle size. Thus, in contrast to the Heck and Suzuki reactions, Pd/C is more active than palladium nanoparticles deposited on SWNT for the catalytic oxidation by molecular oxygen of cinnamyl alcohol to cinnamaldehyde and for the hydrogenation of cinnamaldehyde to 3-phenylpropionaldehyde.  相似文献   

8.
An efficient magnetic nanoparticle‐supported palladium (Fe3O4/SiO2‐PAP‐Pd) catalyst is reported for the Suzuki cross‐coupling and Stille reactions. This method provides a novel and much improved modification of the Suzuki and Stille coupling reactions in terms of phosphine‐free catalyst, short reaction time, clean reaction and small quantity of catalyst. Another important feature of this method is that the catalyst can be easily recovered from the reaction mixture and reused with no loss of its catalytic activity. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

9.
A new mesoporous organic–inorganic nanocomposite was formulated and then used as stabilizer and support for the preparation of palladium nanoparticles (Pd NPs). The properties and structure of Pd NPs immobilized on prepared 1,4‐diazabicyclo[2.2.2]octane (DABCO) chemically tagged on mesoporous γ‐Fe2O3@hydroxyapatite (ionic modified (IM)‐MHA) were investigated using various techniques. The synergistic effects of the combined properties of MHA, DABCO and Pd NPs, and catalytic activity of γ‐Fe2O3@hydroxyapatite‐DABCO‐Pd (IM‐MHA‐Pd) were investigated for the Heck cross‐coupling reaction in aqueous media. The appropriate surface area and pore size of mesoporous IM‐MHA nanocomposite can provide a favourable hard template for immobilization of Pd NPs. The loading level of Pd in the nanocatalyst was 0.51 mmol g?1. DABCO bonded to the MHA surface acts as a Pd NP stabilizer and can also lead to colloidal stability of the nanocomposite in aqueous solution. The results reveal that IM‐MHA‐Pd is highly efficient for coupling reactions of a wide range of aryl halides with olefins under green conditions. The superparamagnetic nature of the nanocomposite means that the catalyst to be easily separated from solution through magnetic decantation, and the catalytic activity of the recycled IM‐MHA‐Pd showed almost no appreciable loss even after six consecutive runs.  相似文献   

10.
Palladium(II) complexes of aryl dithiolates and wide-bite-angle diphosphines Xantphos and dppf have been developed as efficient catalysts in Suzuki and Suzuki carbonylation reactions. The catalytic activity of these highly stable, discrete and charged complexes was investigated in Heck coupling reactions of styrene and a variety of aryl bromides. Under optimized reaction conditions these palladium complexes showed excellent activity with high turnover number (6 × 106) and high turnover frequency (4 × 105 h−1). The effect of bite angle of diphosphines on the catalytic activity of the complexes [Pd2(PP)2(SC12H8S)]2(OTf)4 followed the trend PP = Xantphos > dppf > dppe as the order of their bite angles. The catalyst could be reused, and after three cycles the formation of significant amount of Pd nanoparticles was noticed, which were characterized using powder X-ray diffraction, energy-dispersive X-ray analysis and transmission electron microscopy. The high catalytic activity has been attributed to the Pd nanoparticles.  相似文献   

11.
A series of Pd(II)‐enaminone complexes, termed Pd(eao)2, have been synthesized and characterized. The investigation on the catalytic activities of these new Pd(II)‐reagents has proved that the Pd(eao)2‐ 1 possesses excellent catalytic activity for the Suzuki‐ Miyaura cross coupling reactions of aryl bromides/chlorides with aryl/vinyl boronic acids in the environmentally benign media of aqueous PEG400 at low loading (5 mol‰). The superiority of this Pd(II)‐reagent to those commercial Pd(II) and Pd(0) catalysts in catalyzing the reactions has been confirmed by parallel experiments. What's more, Pd(eao)2‐ 2 has been found as a practical catalyst for the homo‐coupling reactions of aryl boronic acids.  相似文献   

12.
When a single metal fails to promote an efficient Suzuki‐Miyaura coupling reaction at ambient temperature, the synergistic cooperation of two distinct metals might improve the reaction. To examine the synergistic effect of palladium and nickel for catalyzing Suzuki coupling reaction, g‐C3N4 supported metal nanoparticles of PdO, NiO and Pd‐PdO‐NiO were prepared, characterized and their catalytic activities evaluated over different aryl halides at room temperature and 78 °C. The morphological characterization of Pd‐PdO‐NiO/g‐C3N4 demonstrated that the bimetallic particles were uniformly dispersed over the g‐C3N4 layers with diameters ranging from 3.5‐7.7 nm. XPS analysis showed that nanoparticles of Pd‐PdO‐NiO consisted of Pd(II), Pd(0) and Ni(II) sites. The experiments performed on the catalytic activity of Pd‐PdO‐NiO/g‐C3N4 showed that the prepared catalyst demonstrated an efficient activity without using toxic solvents.  相似文献   

13.
A simple and effective strategy is described for the synthesis of Pd–CdS nanopowder by the reduction of an organopalladium(II) complex, [PdCl2(cod)] (cod = cis ,cis ‐1,5‐cyclooctadiene), in the presence of CdS quantum dots (QDs) at a toluene–water interface. We investigated the impact of addition of CdS QDs on catalytic activity of Pd nanoparticles (NPs). The Pd–CdS nanopowder functions as an efficient catalyst for Suzuki–Miyaura reactions for the formation of carbon–carbon bonds. There is a high electron density on Pd NPs and due to their high electron affinity they behave as an electron scavenger from CdS increasing the rate of oxidative addition, which is the rate‐determining step of the catalytic cycle, and, just as we expect, the C─C coupling reaction with the Pd–CdS nanopowder is faster and occurs in less time than that with Pd nanocatalysts. Compared to classical reactions, this method consistently has the advantages of short reaction times, high yields in a green solvent, reusability of the catalyst without considerable loss of catalytic activity and low cost, and is a facile method for the preparation of the catalyst.  相似文献   

14.
Bridged N,N′-substituted bisbenzimidazolium bromide salts (L1, L2, and L3) were synthesized and fully characterized. Reactions of palladium acetate with L1, L2, and L3 afforded corresponding new bridged bis(N-heterocyclic carbene)palladium(II) complexes (C1, C2, and C3) in high yields. The X-ray structure of complex C1 showed that the Pd(II) ion is bonded to the two carbon atoms of the bis(N-heterocyclic carbene) and two bromido ligands are in the cis position, resulting in a distorted square planar geometry. The three Pd(NHC)2Br2 complexes C1, C2, and C3 were evaluated in carbonylative Suzuki–Miyaura coupling reactions of aryl boronic acids with aryl halides and displayed high catalytic activity with low catalyst loading. The coupling reactions of aryl bromides were selective towards the carbonylation product at higher carbon monoxide pressure.  相似文献   

15.
Several water-soluble cyclopalladated complexes with five- or six-membered rings have been prepared as air-stable solids from Schiff base ligands bearing an N-phenyl sulfonate groups. Cyclopalladated complexes with six-membered rings show high catalytic efficiency for the Suzuki reactions of aryl bromides with phenylboronic acid in aqueous solvents under mild conditions. Palladium complex 1 can be used for five reaction cycles in high conversions for the Suzuki reactions in neat water without additives. The catalytic process for the Suzuki couplings is proved by TEM analysis to proceed on Pd(0) nanoparticles. Surfactant-protected palladium nanoparticles present lower activities and poorer recyclability for the coupling reactions than those generated in situ without additives.  相似文献   

16.
The palladium nanoparticles/carbon nanofibers(Pd NPs/CNFs) catalyst was prepared by the electrospinning method, the hydrazine hydrate solution reduction in an ice bath environment, the high temperature carbonization. The catalyst was characterized by X-ray diffraction(XRD), fieldemission scanning electron microscope(FE-SEM), and transmission electron microscopy(TEM). The nanofibers are not cross-linked and arranged in order. The surface of Pd NPs/CNFs is smooth, and it can be observed that a large number of particles were loaded and well-dispersed in carbon fiber matrix, and the particle distribution is uniform. The activity center of catalyst is Pd(0). The Pd NPs/CNFs exhibited a high efficiency, good reusability and stability in the Suzuki and Heck reactions. It can be used for at least five consecutive runs without significant loss of its catalytic activity. The good recyclability of Pd NPs/CNFs provides a way to greatly reduce the cost of the catalyst.  相似文献   

17.
Graphene oxide (GO) was functionalized with a N-heterocyclic carbene (NHC) precursor, 3-(3-aminopropyl)-1-methylimidazolium bromide ([APMIm][Br]) for the immobilization of palladium catalyst. The GO-supported NHC precursor (IMGO) formed a stable complex with Pd(OAc)2 (GO–NHC–Pd), which showed excellent catalytic activity and fast reaction kinetics in the aqueous-phase Suzuki reaction of aryl bromides and chlorides at relatively mild conditions (1 h at 50 °C). The GO–NHC–Pd catalyst was reused several times without any loss of its catalytic activity in the Suzuki reaction of aryl bromide.  相似文献   

18.
Fuberidazole has been successfully immobilized onto nano-Fe3O4 supported (3-chloropropyl)trimethoxysilane (3-CPTS) leading to a novel functionalized magnetic nanoparticle (FB/MNP). The Pd(0) complex, Pd-FB/MNP, was prepared by grafting Pd (OAc)2 on FB/MNP and subsequent reduction of a synthesized Pd (II) complex using NaBH4. Pd-FB/MNP has been characterized by FT-IR, SEM, TGA, XRD, ICP, EDS, BET and VSM. The Pd(0) complex proved to be an efficient phosphine- and halide-free recyclable heterogeneous catalyst for Suzuki as well as for Stille C-C coupling reactions showing high catalytic activity (up to 98%). Its catalytic activity in both reactions has been studied in PEG-400 as a green solvent. Besides, the selectivity of aryl iodide and aryl bromide over aryl chloride is observed during the C-C coupling reaction. The catalyst could be recovered easily from the reaction mixture using an external magnet device and recycled several times without considerable loss in activity. Additionally, the results of a palladium leaching test of the nano-catalyst demonstrate that no leaching of Pd took place during the C-C coupling process making the procedure environmentally friendly.  相似文献   

19.
The preparation of palladium (II) complexes having sterically congested azetidines as ligands is described. Diastereomerically pure α-alkylamino and α-alkylimino azetidines react with Na2PdCl4 to afford the corresponding bidendate Pd(II) complexes, whereas 2-cyano azetidines can be used to access bidendate Pd(II) complexes containing an amino-imidate moiety. Preliminary study of the catalytic activity of these new complexes in the Suzuki cross-coupling reaction is presented.  相似文献   

20.
Linear polystyrene-stabilized PdO nanoparticles (PS-PdONPs) were prepared in water by thermal decomposition of Pd(OAc)(2) in the presence of polystyrene. The immobilization degree of palladium was dependent on the molecular weight of polystyrene, while the size of the Pd nanoparticles was not. Linear polystyrene-stabilized Pd nanoparticles (PS-PdNPs) were also prepared using NaBH(4) and phenylboronic acid as reductants. The catalytic activity of PS-PdONPs was slightly higher than that of PS-PdNPs for Suzuki coupling reaction in water. PS-PdONPs exhibited high catalytic activity for Suzuki and copper-free Sonogashira coupling reactions in water and recycled without loss of activity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号